|
import os |
|
import zipfile |
|
import json |
|
import base64 |
|
import sys |
|
import traceback |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{lecorve2022sparql2text, |
|
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications}, |
|
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.}, |
|
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_URLS = { |
|
"train": "train.json", |
|
"dev": "dev.json", |
|
"test": "test.json", |
|
"challenge": "challenge.json" |
|
} |
|
|
|
_DESCRIPTION = """\ |
|
Augmented version of WebNLG v3.0 English with follow-up SPARQL queries with their associated answer(s). A small portion of it also contains natural language questions associated with the queries. |
|
""" |
|
|
|
class WebNLGQA(datasets.GeneratorBasedBuilder): |
|
""" |
|
WebNLG-QA: Augmented version of WebNLG v3.0 English with follow-up SPARQL queries with their associated answer(s). A small portion of it also contains natural language questions associated with the queries. |
|
""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"category": datasets.Value("string"), |
|
"size": datasets.Value("int32"), |
|
"id": datasets.Value("string"), |
|
"eid": datasets.Value("string"), |
|
"original_triple_sets": [ |
|
{"subject": datasets.Value("string"), |
|
"property": datasets.Value("string"), |
|
"object": datasets.Value("string")} |
|
], |
|
"modified_triple_sets": [ |
|
{"subject": datasets.Value("string"), |
|
"property": datasets.Value("string"), |
|
"object": datasets.Value("string")} |
|
], |
|
"shape": datasets.Value("string"), |
|
"shape_type": datasets.Value("string"), |
|
"lex": datasets.Sequence( |
|
{ |
|
"comment": datasets.Value("string"), |
|
"lid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"lang": datasets.Value("string"), |
|
} |
|
), |
|
"test_category": datasets.Value("string"), |
|
"dbpedia_links": datasets.Sequence(datasets.Value("string")), |
|
"links": datasets.Sequence(datasets.Value("string")), |
|
"graph": [ |
|
[datasets.Value("string")] |
|
], |
|
"main_entity": datasets.Value("string"), |
|
"mappings": [ |
|
{ |
|
"modified": datasets.Value("string"), |
|
"readable": datasets.Value("string"), |
|
"graph": datasets.Value("string") |
|
} |
|
], |
|
"dialogue": [ |
|
{ |
|
"question": [ { |
|
"source": datasets.Value("string"), |
|
"text": datasets.Value("string") |
|
}], |
|
"graph_query": datasets.Value("string"), |
|
"readable_query": datasets.Value("string"), |
|
"graph_answer": [ |
|
datasets.Value("string") |
|
], |
|
"readable_answer": [ |
|
datasets.Value("string") |
|
], |
|
"type": [ datasets.Value("string") ] |
|
} |
|
] |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
paths = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": paths['train'], |
|
"split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": paths['dev'], |
|
"split": "dev"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": paths['test'], |
|
"split": "test"} |
|
), |
|
datasets.SplitGenerator( |
|
name="challenge", |
|
gen_kwargs={"filepath": paths['challenge'], |
|
"split": "challenge"} |
|
) |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
def transform_sample(original_sample): |
|
transformed_sample = { |
|
"category": "", |
|
"size": -1, |
|
"id": "", |
|
"eid": "", |
|
"original_triple_sets": [], |
|
"modified_triple_sets": [], |
|
"shape": "", |
|
"shape_type": "", |
|
"lex": [], |
|
"test_category": "", |
|
"dbpedia_links": [], |
|
"links": [], |
|
"graph": [], |
|
"main_entity": "", |
|
"mappings": [], |
|
"dialogue": [] |
|
} |
|
|
|
for (old_key, new_key) in [("modifiedtripleset", "modified_triple_sets"), ("originaltriplesets", "original_triple_sets"), ("dbpedialinks", "dbpedia_links"), ("lexicalisations", "lex"), ("xml_id", "eid")]: |
|
original_sample[new_key] = original_sample[old_key] |
|
del original_sample[old_key] |
|
|
|
original_sample["original_triple_sets"] = original_sample["original_triple_sets"]["originaltripleset"][0] |
|
|
|
for l in original_sample["lex"]: |
|
l["lid"] = l["xml_id"] |
|
del l["xml_id"] |
|
l["text"] = l["lex"] |
|
del l["lex"] |
|
|
|
for turn in original_sample["dialogue"]: |
|
if "question" in turn: |
|
old_format = turn["question"] |
|
new_format = [] |
|
for source, text in old_format.items(): |
|
new_format.append({"source": source, "text": text}) |
|
turn["question"] = new_format |
|
|
|
|
|
for k in transformed_sample: |
|
if k in original_sample: |
|
transformed_sample[k] = original_sample[k] |
|
|
|
|
|
return transformed_sample |
|
|
|
|
|
with open(filepath,'r') as f: |
|
data = json.load(f) |
|
key = 0 |
|
for it in data: |
|
yield key, transform_sample(it) |
|
key += 1 |
|
|