Datasets:

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
trec6 / dataset_infos.json
SamAdamDay's picture
Update dataset_infos.json
629d280
{
"default": {
"description": "The Text REtrieval Conference (TREC) Question Classification dataset contains 5500 labeled questions in training set and another 500 for test set. This dataset uses only the 6 coarse class labels. The original train dataset split has been divided into a new train split and a validation split, taking 10% for the latter.",
"citation": "@inproceedings{li-roth-2002-learning,title = \"Learning Question Classifiers\",author = \"Li, Xin and Roth, Dan\",booktitle = \"{COLING} 2002: The 19th International Conference on Computational Linguistics\", year = \"2002\", url = \"https://www.aclweb.org/anthology/C02-1150\",} @inproceedings{hovy-etal-2001-toward, title = \"Toward Semantics-Based Answer Pinpointing\", author = \"Hovy, Eduard and Gerber, Laurie and Hermjakob, Ulf and Lin, Chin-Yew and Ravichandran, Deepak\", booktitle = \"Proceedings of the First International Conference on Human Language Technology Research\", year = \"2001\", url = \"https://www.aclweb.org/anthology/H01-1069\",}",
"homepage": "https://cogcomp.seas.upenn.edu/Data/QA/QC/",
"license": "",
"features": {
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
},
"label": {
"num_classes": 6,
"names": [
"ABBR",
"ENTY",
"DESC",
"HUM",
"LOC",
"NUM"
],
"names_file": null,
"id": null,
"_type": "ClassLabel"
}
},
"task_templates": [
{
"task": "text-classification",
"text_column": "text",
"label_column": "label",
"labels": [
"ABBR",
"ENTY",
"DESC",
"HUM",
"LOC",
"NUM"
]
}
],
"version": {
"version_str": "1.0.0",
"description": null,
"major": 1,
"minor": 0,
"patch": 0
}
}
}