Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 4,881 Bytes
0c95d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca395e
0c95d61
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import re
import math

import pandas as pd

from tqdm import tqdm

seed = 7497

TOXIC_COLUMNS = [
    "toxic",
    "severe_toxic",
    "obscene",
    "threat",
    "insult",
    "identity_hate",
]

# Time and date regexes
TIME = r"([0-9]{1,2}:[0-9]{2}( (am|AM|pm|PM))?)"
DAY = r"([23]?(1(st)?|2(nd)?|3(rd)?|[4-9](th)?)|1[0-9](th)?)"
MONTH = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Nov|Dec)"
YEAR = r"('?[0-9]{2}|[0-9]{4})"
DATE = rf"(({DAY} {MONTH}|{MONTH} {DAY})(,? {YEAR})?)"
TIMESTAMP = rf"((({TIME},? (\(UTC\) )?)?{DATE}|({DATE},? )?{TIME})(\s+\(UTC\))?)"

# The 'talk' part at the end of a signature
TALK = r"((\|\s*|\(\s*)?[tT]alk((\s*[-|β€’, ]\s*|\s+)[cC]ontribs)?(\s*[-|)])?)"

# IP addresses
IP = r"([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})"

# Username and the username part of a the signature
USERNAME = r"([^#<>[\]|{}/@\s]+)"
USER_SIG = rf"((((?:\s)[-–—]\s*)?(\((User:)?{USERNAME}\)|User:{USERNAME})|(?:\s)[-–—]\s*{USERNAME})(\s+{TALK})?)"

# A full signature
SIGNATURE = rf"(((([-–—]\s*)?{IP}(\s+{USER_SIG})?|(?:\s)[-–—]\s*[uU]nsigned|{TALK}|{USER_SIG})(\s+{TIMESTAMP})?)|{TIMESTAMP}(\s+{TALK})?)"

# List of the patterns to remove
REGEX_REMOVE = [
    r"^(\"+|'+)",  # Initial quotation marks
    r"(\"+|'+)$",  # Final quotation marks
    r"^REDIRECT.*$",  # The whole comment is a redirect
    rf"^\s*{SIGNATURE}",  # Initial signature
    rf"{SIGNATURE}\s*$",  # Final signature
    r" \[[0-9]+\]|\[[0-9]+\] ",  # Citations
    r"β€–\s+[tT]alk - [-a-zA-Z0-9._()\s]+β€–",
    r"==[^=]+==",
    r"^::+",
    r"^\s*\(UTC\)",
    rf"Unblock {IP}",
    r"2nd Unblock Request",
    r":Category:",
    r"File:[^\s]+",
    r"\{\|.+\|\}",  # Embedded code
    # r"\{\{.+\s.+\}\}", # Embedded code
    r"^\s+",  # Initial whitespace
    r"\s+$",  # Trailing whitespace
]

# List of patterns to replaces
REGEX_REPLACE = {
    "\n+": "\n",
    "\\'": "'",
    '""+': '"',
    "''+": "'",
    # r"(WP|Wikipedia):[^\s]+": "URL", # Wikipedia internal links
    r"[^\s]+#[^\s]+": "URL",  # Wikipedia internal links
    r"https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,4}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)": "URL",  # ULRs
    r"([uU]ser_[tT]alk|[tT]alk):[^\s]+": "URL",  # Talk links
}


def clean_sentence(sentence):
    """Preprocess a sentence using the regex rules"""
    for pattern in REGEX_REMOVE:
        sentence = re.sub(pattern, "", sentence)
    for pattern, repl in REGEX_REPLACE.items():
        sentence = re.sub(pattern, repl, sentence)
    return sentence


def make_binary_label(row):
    """Make a row label binary by combining all toxicity types"""
    for column in TOXIC_COLUMNS:
        if row[column] == 1:
            return 1
    return 0


print("Loading original data...")

# Load up the original data
train_df = pd.read_csv("orig_train.csv").set_index("id")
test_text_df = pd.read_csv("orig_test.csv").set_index("id")
test_labels_df = pd.read_csv("orig_test_labels.csv").set_index("id")

# Remove the datapoints which have no label
test_text_df = test_text_df.loc[test_labels_df["toxic"] != -1]
test_labels_df = test_labels_df.loc[test_labels_df["toxic"] != -1]

# Join the test text and labels to make a complete dataset
test_df = test_text_df.join(test_labels_df)

print("Cleaning train split...")
for index, row in tqdm(train_df.iterrows(), total=len(train_df)):
    row["comment_text"] = clean_sentence(row["comment_text"])

print("Cleaning test split...")
for index, row in tqdm(test_df.iterrows(), total=len(test_df)):
    row["comment_text"] = clean_sentence(row["comment_text"])


# Some texts will get reduced to the empty string. Let's remove them first
print("Removing empty texts...")
train_df = train_df.loc[train_df["comment_text"] != ""]
test_df = test_df.loc[test_df["comment_text"] != ""]

# Get rid of any duplicates we made
print("Removing duplicate entries...")
train_df = train_df.drop_duplicates(subset=["comment_text"])
test_df = test_df.drop_duplicates(subset=["comment_text"])

print("Creating binary column...")

# Make the new binary column
train_df["label"] = train_df.apply(make_binary_label, axis=1)
test_df["label"] = test_df.apply(make_binary_label, axis=1)

# Remove all other classification columns
train_df = train_df.drop(columns=TOXIC_COLUMNS)
test_df = test_df.drop(columns=TOXIC_COLUMNS)

print("Creating eval split...")

# Shuffle the current train split
train_df = train_df.sample(frac=1, random_state=seed)

# The new size of the train split
train_size = math.floor(len(train_df) * 0.8)

# Separate into train and eval splits
eval_df = train_df[train_size:]
train_df = train_df[:train_size]

# print("Saving to disk...")
with open("train.csv", "w") as f:
    train_df.to_csv(f)
with open("validation.csv", "w") as f:
    eval_df.to_csv(f)
with open("test.csv", "w") as f:
    test_df.to_csv(f)