mevol's picture
adding all relevant files for independent validation set
096c2f7
raw
history blame contribute delete
No virus
41.9 kB
Structure B-evidence
of O
the O
Dual O
- O
Mode O
Wnt B-protein_type
Regulator O
Kremen1 B-protein
and O
Insight O
into O
Ternary O
Complex O
Formation O
with O
LRP6 B-protein
and O
Dickkopf B-protein_type
Kremen B-protein_type
1 I-protein_type
and I-protein_type
2 I-protein_type
have O
been O
identified O
as O
co B-protein_type
- I-protein_type
receptors I-protein_type
for O
Dickkopf B-protein_type
( O
Dkk B-protein_type
) O
proteins O
, O
hallmark O
secreted O
antagonists O
of O
canonical O
Wnt B-protein_type
signaling O
. O
We O
present O
here O
three O
crystal B-evidence
structures I-evidence
of O
the O
ectodomain B-structure_element
of O
human B-species
Kremen1 B-protein
( O
KRM1ECD B-protein
) O
at O
resolutions O
between O
1 O
. O
9 O
and O
3 O
. O
2 O
Å O
. O
KRM1ECD B-protein
emerges O
as O
a O
rigid O
molecule O
with O
tight O
interactions O
stabilizing O
a O
triangular B-protein_state
arrangement I-protein_state
of O
its O
Kringle B-structure_element
, O
WSC B-structure_element
, O
and O
CUB B-structure_element
structural O
domains O
. O
The O
structures B-evidence
reveal O
an O
unpredicted O
homology O
of O
the O
WSC B-structure_element
domain O
to O
hepatocyte B-protein_type
growth I-protein_type
factor I-protein_type
. O
We O
further O
report O
the O
general O
architecture O
of O
the O
ternary O
complex O
formed O
by O
the O
Wnt B-protein_type
co B-protein_type
- I-protein_type
receptor I-protein_type
Lrp5 B-protein_type
/ I-protein_type
6 I-protein_type
, O
Dkk B-protein_type
, O
and O
Krm B-protein_type
, O
determined O
from O
a O
low O
- O
resolution O
complex O
crystal B-evidence
structure I-evidence
between O
β B-structure_element
- I-structure_element
propeller I-structure_element
/ I-structure_element
EGF I-structure_element
repeats I-structure_element
( I-structure_element
PE I-structure_element
) I-structure_element
3 I-structure_element
and I-structure_element
4 I-structure_element
of O
the O
Wnt B-protein_type
co B-protein_type
- I-protein_type
receptor I-protein_type
LRP6 B-protein
( O
LRP6PE3PE4 B-protein
), O
the O
cysteine B-structure_element
- I-structure_element
rich I-structure_element
domain I-structure_element
2 I-structure_element
( O
CRD2 B-structure_element
) O
of O
DKK1 B-protein
, O
and O
KRM1ECD B-protein
. O
DKK1CRD2 B-protein
is O
sandwiched O
between O
LRP6PE3 B-protein
and O
KRM1Kringle B-protein
- B-structure_element
WSC I-structure_element
. O
Modeling B-experimental_method
studies O
supported O
by O
surface B-experimental_method
plasmon I-experimental_method
resonance I-experimental_method
suggest O
a O
direct O
interaction B-site
site I-site
between O
Krm1CUB B-protein
and O
Lrp6PE2 B-protein
. O
The O
structure B-evidence
of O
the O
KREMEN B-protein
1 I-protein
ectodomain B-structure_element
is O
solved B-experimental_method
from O
three O
crystal B-evidence
forms I-evidence
Kringle B-structure_element
, O
WSC B-structure_element
, O
and O
CUB B-structure_element
subdomains O
interact O
tightly O
to O
form O
a O
single O
structural O
unit O
The O
interface B-site
to O
DKKs B-protein_type
is O
formed O
from O
the O
Kringle B-structure_element
and O
WSC B-structure_element
domains O
The O
CUB B-structure_element
domain O
is O
found O
to O
interact O
directly O
with O
LRP6PE1PE2 B-protein
Zebisch O
et O
al O
. O
describe O
the O
ectodomain B-structure_element
structure B-evidence
of O
KREMEN B-protein
1 I-protein
, O
a O
receptor B-protein_type
for O
Wnt B-protein_type
antagonists O
of O
the O
DKK B-protein_type
family O
. O
Apo B-protein_state
structures B-evidence
and O
a O
complex B-protein_state
with I-protein_state
functional B-protein_state
fragments I-protein_state
of O
DKK1 B-protein
and O
LRP6 B-protein
shed O
light O
on O
the O
function O
of O
this O
dual O
- O
mode O
regulator O
of O
Wnt B-protein_type
signaling O
. O
Signaling O
by O
Wnt B-protein_type
morphogens O
is O
renowned O
for O
its O
fundamental O
roles O
in O
embryonic O
development O
, O
tissue O
homeostasis O
, O
and O
stem O
cell O
maintenance O
. O
Due O
to O
these O
functions O
, O
generation O
, O
delivery O
, O
and O
interpretation O
of O
Wnt B-protein_type
signals O
are O
all O
heavily O
regulated O
in O
the O
animal O
body O
. O
Vertebrate B-taxonomy_domain
Dickkopf B-protein_type
proteins O
( O
Dkk1 B-protein_type
, O
2 B-protein_type
, O
and O
4 B-protein_type
) O
are O
one O
of O
many O
secreted O
antagonists O
of O
Wnt B-protein_type
and O
function O
by O
blocking O
access O
to O
the O
Wnt B-protein_type
co B-protein_type
- I-protein_type
receptor I-protein_type
LRP5 B-protein
/ I-protein
6 I-protein
. O
Kremen B-protein_type
proteins O
( O
Krm1 B-protein_type
and O
Krm2 B-protein_type
) O
have O
been O
identified O
as O
additional O
high O
- O
affinity O
transmembrane B-protein_type
receptors I-protein_type
for O
Dkk B-protein_type
. O
Krm B-protein_type
and O
Dkk B-protein_type
synergize O
in O
Wnt B-protein_type
inhibition O
during O
Xenopus B-taxonomy_domain
embryogenesis O
to O
regulate O
anterior O
- O
posterior O
patterning O
. O
Mechanistically O
it O
is O
thought O
that O
, O
in O
the O
presence B-protein_state
of I-protein_state
Dkk B-protein_type
, O
Krm B-protein_type
forms O
a O
ternary O
complex B-protein_state
with I-protein_state
Lrp6 B-protein_type
, O
which O
is O
then O
rapidly O
endocytosed O
. O
This O
amplifies O
the O
intrinsic O
Wnt B-protein_type
antagonistic O
activity O
of O
Dkk B-protein_type
by O
efficiently O
depleting O
the O
cell O
surface O
of O
the O
Wnt B-protein_type
co B-protein_type
- I-protein_type
receptor I-protein_type
. O
In O
accordance O
with O
this O
, O
Krm1 B-protein_type
/O
and O
Krm2 B-protein_type
/O
double B-experimental_method
knockout I-experimental_method
mice B-taxonomy_domain
show O
a O
high O
bone O
mass O
phenotype O
typical O
of O
increased O
Wnt B-protein_type
signaling O
, O
as O
well O
as O
growth O
of O
ectopic O
forelimb O
digits O
. O
Growth O
of O
ectopic O
digits O
is O
further O
enhanced O
upon O
additional O
loss O
of O
dkk B-protein_type
expression O
. O
The O
Wnt B-protein_type
antagonistic O
activity O
of O
Krm1 B-protein_type
is O
also O
linked O
to O
its O
importance O
for O
correct O
thymus O
epithelium O
formation O
in O
mice B-taxonomy_domain
. O
The O
importance O
of O
intact B-protein_state
KRM1 B-protein
for O
normal O
human B-species
development O
and O
health O
is O
highlighted O
by O
the O
recent O
finding O
that O
a O
homozygous O
mutation O
in O
the O
ectodomain B-structure_element
of O
KRM1 B-protein
leads O
to O
severe O
ectodermal O
dysplasia O
including O
oligodontia O
. O
Interestingly O
, O
the O
Wnt B-protein_type
antagonistic O
activity O
of O
Krm B-protein_type
is O
context O
dependent O
, O
and O
Krm B-protein_type
proteins O
are O
actually O
dual O
- O
mode O
Wnt B-protein_type
regulators O
. O
In O
the O
absence B-protein_state
of I-protein_state
Dkk B-protein_type
, O
Krm1 B-protein_type
and O
2 B-protein_type
change O
their O
function O
from O
inhibition O
to O
enhancement O
of O
Lrp6 B-protein_type
- O
mediated O
signaling O
. O
By O
direct O
binding O
to O
Lrp6 B-protein_type
via O
the O
ectodomains B-structure_element
, O
Krm B-protein_type
proteins O
promote O
Lrp6 B-protein_type
cell O
- O
surface O
localization O
and O
hence O
increase O
receptor O
availability O
. O
Further O
increasing O
the O
complexity O
of O
Krm B-protein_type
functionality O
, O
it O
was O
recently O
found O
that O
Krm1 B-protein_type
( O
but O
not O
Krm2 B-protein_type
) O
can O
also O
act O
independently O
of O
LRP5 B-protein
/ I-protein
6 I-protein
and O
Wnt B-protein_type
as O
a O
dependence O
receptor O
, O
triggering O
apoptosis O
unless O
bound B-protein_state
to I-protein_state
Dkk B-protein_type
. O
Structurally O
, O
Krm1 B-protein_type
and O
2 B-protein_type
are O
type B-protein_type
I I-protein_type
transmembrane I-protein_type
proteins I-protein_type
with O
a O
40 O
kDa O
ectodomain B-structure_element
and O
a O
flexible B-protein_state
cytoplasmic B-structure_element
tail I-structure_element
consisting O
of O
60 B-residue_range
O
75 B-residue_range
residues O
. O
The O
ectodomain B-structure_element
consists O
of O
three O
similarly O
sized O
structural O
domains O
of O
around O
10 O
kDa O
each O
: O
the O
N O
- O
terminal O
Kringle B-structure_element
domain O
( O
KR B-structure_element
) O
is O
followed O
by O
a O
WSC B-structure_element
domain O
of O
unknown O
fold O
. O
The O
third O
structural O
domain O
is O
a O
CUB B-structure_element
domain O
. O
An O
approximately B-residue_range
70 I-residue_range
- I-residue_range
residue I-residue_range
linker B-structure_element
connects O
the O
CUB B-structure_element
domain O
to O
the O
transmembrane B-structure_element
span I-structure_element
. O
An O
intact B-protein_state
KR B-structure_element
- I-structure_element
WSC I-structure_element
- I-structure_element
CUB I-structure_element
domain O
triplet O
and O
membrane O
attachment O
is O
required O
for O
Wnt B-protein_type
antagonism O
. O
The O
transmembrane B-structure_element
span I-structure_element
and O
cytoplasmic B-structure_element
tail I-structure_element
can O
be O
replaced O
with O
a O
GPI B-structure_element
linker B-structure_element
without O
impact O
on O
Wnt B-protein_type
antagonism O
. O
The O
structures B-evidence
presented O
here O
reveal O
the O
unknown O
fold O
of O
the O
WSC B-structure_element
domain O
and O
the O
tight O
interactions O
of O
all O
three O
domains O
. O
We O
further O
succeeded O
in O
determination O
of O
a O
low O
- O
resolution O
LRP6PE3PE4 B-complex_assembly
- I-complex_assembly
DKK1CRD2 I-complex_assembly
- I-complex_assembly
KRM1ECD I-complex_assembly
complex O
, O
defining O
the O
architecture O
of O
the O
Wnt B-protein_type
inhibitory B-complex_assembly
complex I-complex_assembly
that O
leads O
to O
Lrp6 B-protein
cell O
- O
surface O
depletion O
. O
The O
recombinant O
production O
of O
the O
extracellular B-structure_element
domain I-structure_element
of O
Krm B-protein_type
for O
structural B-experimental_method
studies I-experimental_method
proved O
challenging O
( O
see O
Experimental O
Procedures O
). O
We O
succeeded O
in O
purifying O
KRM1ECD B-protein
complexes B-protein_state
with I-protein_state
DKK1fl B-protein
, O
DKK1Linker B-protein
- B-structure_element
CRD2 I-structure_element
, O
and O
DKK1CRD2 B-protein
that O
were O
monodisperse O
and O
stable O
in O
gel B-experimental_method
filtration I-experimental_method
, O
hence O
indicating O
at O
least O
micromolar O
affinity O
( O
data O
not O
shown O
). O
Several O
crystal B-evidence
forms I-evidence
were O
obtained O
from O
these O
complexes O
, O
however O
, O
crystals B-evidence
always O
contained O
only O
KRM1 B-protein
protein O
. O
We O
solved B-experimental_method
the O
structure B-evidence
of O
KRM1ECD B-protein
in O
three O
crystal O
forms O
at O
1 O
. O
9 O
, O
2 O
. O
8 O
, O
and O
3 O
. O
2 O
Å O
resolution O
( O
Table O
1 O
). O
The O
high O
- O
resolution O
structure B-evidence
is O
a O
near O
full B-protein_state
- I-protein_state
length I-protein_state
model O
( O
Figure O
1 O
). O
The O
small B-protein_state
, O
flexible B-protein_state
, O
and O
charged B-protein_state
98AEHED102 B-structure_element
loop I-structure_element
could O
only O
be O
modeled O
in O
a O
slightly O
lower O
resolution O
structure B-evidence
and O
in O
crystal O
form O
III O
. O
The O
KR B-structure_element
, O
WSC B-structure_element
, O
and O
CUB B-structure_element
are O
arranged O
in O
a O
roughly O
triangular O
fashion O
with O
tight O
interactions O
between O
all O
three O
domains O
. O
The O
KR B-structure_element
domain O
, O
which O
bears O
two O
of O
the O
four O
glycosylation B-site
sites I-site
, O
contains O
the O
canonical O
three O
disulfide B-ptm
bridges I-ptm
( O
C32 B-residue_name_number
- O
C114 B-residue_name_number
, O
C55 B-residue_name_number
- O
C95 B-residue_name_number
, O
C84 B-residue_name_number
- O
C109 B-residue_name_number
) O
and O
, O
like O
other O
Kringle B-structure_element
domains O
, O
is O
low O
in O
secondary O
structure O
elements O
. O
The O
structurally O
most O
similar O
Kringle B-structure_element
domain O
is O
that O
of O
human B-species
plasminogen B-protein
( O
PDB O
: O
1PKR O
) O
with O
an O
root B-evidence
- I-evidence
mean I-evidence
- I-evidence
square I-evidence
deviation I-evidence
( O
RMSD B-evidence
) O
of O
1 O
. O
7 O
Å O
for O
73 O
aligned O
Cα O
( O
Figure O
1B O
). O
The O
KRM1 B-protein
structure B-evidence
reveals O
the O
fold O
of O
the O
WSC B-structure_element
domain O
for O
the O
first O
time O
. O
The O
structure B-evidence
is O
best O
described O
as O
a O
sandwich B-structure_element
of O
a O
β1 B-structure_element
- I-structure_element
β5 I-structure_element
- I-structure_element
β3 I-structure_element
- I-structure_element
β4 I-structure_element
- I-structure_element
β2 I-structure_element
antiparallel I-structure_element
β I-structure_element
sheet I-structure_element
and O
a O
single O
α B-structure_element
helix I-structure_element
. O
The O
structure B-evidence
is O
also O
rich O
in O
loops B-structure_element
and O
is O
stabilized O
by O
four O
disulfide B-ptm
bridges I-ptm
( O
C122 B-residue_name_number
- O
C186 B-residue_name_number
, O
C147 B-residue_name_number
- O
C167 B-residue_name_number
, O
C151 B-residue_name_number
- O
C169 B-residue_name_number
, O
C190 B-residue_name_number
- O
C198 B-residue_name_number
). O
Using O
the O
PDBeFold B-experimental_method
server I-experimental_method
, O
we O
detected O
a O
surprising O
yet O
significant O
homology O
to O
PAN B-structure_element
module I-structure_element
domains I-structure_element
. O
The O
closest O
structural O
relative O
is O
hepatocyte B-protein_type
growth I-protein_type
factor I-protein_type
( O
HGF B-protein_type
, O
PDB O
: O
1GP9 O
), O
which O
superposes B-experimental_method
with O
an O
RMSD B-evidence
of O
2 O
. O
3 O
Å O
for O
58 O
aligned O
Cα O
( O
Figure O
1B O
). O
The O
CUB B-structure_element
domain O
bears O
two O
glycosylation B-site
sites I-site
. O
Although O
present O
, O
the O
quality O
of O
the O
electron B-evidence
density I-evidence
around O
N217 B-residue_name_number
did O
not O
allow O
modeling O
of O
the O
sugar O
moiety O
. O
In O
crystal B-evidence
form I-evidence
I I-evidence
, O
a O
calcium B-chemical
ion O
is O
present O
at O
the O
canonical O
position O
coordinated B-bond_interaction
by I-bond_interaction
the O
carboxylates O
of O
D263 B-residue_name_number
, O
D266 B-residue_name_number
( O
bidentate O
), O
and O
D306 B-residue_name_number
, O
as O
well O
as O
the O
carbonyl O
of O
N309 B-residue_name_number
and O
a O
water B-chemical
molecule O
. O
The O
coordination B-site
sphere I-site
deviates O
significantly O
from O
perfectly O
octahedral O
( O
not O
shown O
). O
This O
might O
result O
in O
the O
site O
having O
a O
low O
affinity O
and O
may O
explain O
why O
calcium B-chemical
is O
not O
present O
in O
the O
two O
low O
- O
resolution O
crystal B-evidence
forms I-evidence
. O
Loss B-protein_state
of I-protein_state
calcium B-chemical
has O
led O
to O
loop B-structure_element
rearrangements O
and O
partial O
disorder O
in O
these O
crystal B-evidence
forms I-evidence
. O
The O
closest O
structural O
relative O
is O
the O
CUB_C B-structure_element
domain O
of O
Tsg B-protein
- I-protein
6 I-protein
( O
PDB O
: O
2WNO O
), O
which O
superposes B-experimental_method
with O
KRMCUB B-protein
with O
an O
RMSD B-evidence
of O
1 O
. O
6 O
Å O
for O
104 O
Cα O
( O
Figure O
1B O
). O
A O
superposition B-experimental_method
of O
the O
three O
KRM1 B-protein
structures B-evidence
reveals O
no O
major O
structural O
differences O
( O
Figure O
1C O
) O
as O
anticipated O
from O
the O
plethora O
of O
interactions O
between O
the O
three O
domains O
. O
Minor O
differences O
are O
caused O
by O
the O
collapse O
of O
the O
Ca2 B-site
+ I-site
binding I-site
site I-site
in O
crystal B-evidence
forms I-evidence
II I-evidence
and I-evidence
III I-evidence
and O
loop B-structure_element
flexibility O
in O
the O
KR B-structure_element
domain O
. O
The O
F207S B-mutant
mutation O
recently O
found O
to O
cause O
ectodermal O
dysplasia O
in O
Palestinian O
families O
maps O
to O
the O
hydrophobic B-site
core I-site
of O
the O
protein O
at O
the O
interface B-site
of O
the O
three O
subdomains O
( O
Figure O
1A O
). O
Such O
a O
mutation O
is O
bound B-protein_state
to I-protein_state
severely O
destabilize O
the O
protein O
structure O
of O
KRM1 B-protein
, O
leading O
to O
disturbance O
of O
its O
Wnt B-protein_type
antagonistic O
, O
Wnt B-protein_type
stimulatory O
, O
and O
Wnt B-protein_type
independent O
activity O
. O
Co B-experimental_method
- I-experimental_method
crystallization I-experimental_method
of O
LRP6PE3PE4 B-protein
with O
DKK1CRD2 B-protein
, O
and O
LRP6PE1 B-protein
with O
an O
N O
- O
terminal O
peptide O
of O
DKK1 B-protein
has O
provided O
valuable O
structural O
insight O
into O
direct O
Wnt B-protein_type
inhibition O
by O
Dkk B-protein_type
ligands O
. O
One O
face O
of O
the O
rather O
flat B-protein_state
DKK1CRD2 B-protein
fragment O
binds B-protein_state
to I-protein_state
the O
third B-structure_element
β I-structure_element
propeller I-structure_element
of O
LRP6 B-protein
. O
Mutational B-experimental_method
analyses I-experimental_method
further O
implied O
that O
the O
LRP6PE3 B-protein
- O
averted O
face O
of O
DKK1CRD2 B-protein
bears O
the O
Krm B-site
binding I-site
site I-site
, O
hence O
suggesting O
how O
Dkk B-protein_type
can O
recruit O
both O
receptors B-protein_type
into O
a O
ternary O
complex O
. O
To O
obtain O
direct O
insight O
into O
ternary O
complex O
formation O
by O
Lrp5 B-protein_type
/ I-protein_type
6 I-protein_type
, O
Dkk B-protein_type
, O
and O
Krm B-protein_type
, O
we O
subjected O
an O
LRP6PE3PE4 B-complex_assembly
- I-complex_assembly
DKK1fl I-complex_assembly
- I-complex_assembly
KRM1ECD I-complex_assembly
complex O
to O
crystallization B-experimental_method
trials I-experimental_method
. O
Diffraction B-evidence
data I-evidence
collected O
from O
the O
resulting O
crystals B-evidence
were O
highly O
anisotropic O
with O
diffraction O
extending O
in O
the O
best O
directions O
to O
3 O
. O
5 O
Å O
and O
3 O
. O
7 O
Å O
but O
only O
to O
6 O
. O
4 O
Å O
in O
the O
third O
direction O
. O
Despite O
the O
lack O
of O
high O
- O
resolution O
diffraction B-evidence
, O
the O
general O
architecture O
of O
the O
ternary O
complex O
is O
revealed O
( O
Figure O
2A O
). O
DKK1CRD2 B-protein
binds B-protein_state
to I-protein_state
the O
top O
face O
of O
the O
LRP6 B-protein
PE3 B-structure_element
β B-structure_element
propeller I-structure_element
as O
described O
earlier O
for O
the O
binary O
complex O
. O
KRM1ECD B-protein
does O
indeed O
bind B-protein_state
on I-protein_state
the O
opposite O
side O
of O
DKK1CRD2 B-protein
with O
only O
its O
KR B-structure_element
and O
WSC B-structure_element
domains O
engaged O
in O
binding O
( O
Figure O
2A O
). O
Although O
present O
in O
the O
complex O
subjected O
to O
crystallization B-experimental_method
, O
we O
observe O
no O
density B-evidence
that O
could O
correspond O
to O
CRD1 B-structure_element
or O
the O
domain B-structure_element
linker I-structure_element
( O
L B-structure_element
). O
We O
confirm O
that O
the O
CRD2 B-structure_element
of O
DKK1 B-protein
is O
required O
and O
sufficient O
for O
binding O
to O
KRM1 B-protein
: O
In O
surface B-experimental_method
plasmon I-experimental_method
resonance I-experimental_method
( O
SPR B-experimental_method
), O
we O
measured O
low O
micromolar O
affinity B-evidence
between O
full B-protein_state
- I-protein_state
length I-protein_state
DKK1 B-protein
and O
immobilized O
KRM1ECD B-protein
( O
Figure O
2B O
). O
A O
SUMO B-experimental_method
fusion I-experimental_method
of O
DKK1L B-structure_element
- I-structure_element
CRD2 I-structure_element
displayed O
a O
similar O
( O
slightly O
higher O
) O
affinity B-evidence
. O
In O
contrast O
, O
a O
SUMO B-experimental_method
fusion I-experimental_method
of O
DKK1CRD1 B-structure_element
- I-structure_element
L I-structure_element
did O
not O
display O
binding O
for O
concentrations O
tested O
up O
to O
325 O
μM O
( O
Figure O
2B O
). O
Overall O
, O
the O
DKK1 B-site
- I-site
KRM1 I-site
interface I-site
is O
characterized O
by O
a O
large O
number O
of O
polar B-bond_interaction
interactions I-bond_interaction
but O
only O
few O
hydrophobic B-bond_interaction
contacts I-bond_interaction
( O
Figure O
2C O
). O
The O
crystal B-evidence
structure I-evidence
gives O
an O
explanation O
for O
DKK1 B-protein
loss O
- O
of O
- O
binding O
mutations O
identified O
previously O
: O
R191 B-residue_name_number
of O
DKK1 B-protein
forms O
a O
double O
salt B-bond_interaction
bridge I-bond_interaction
to O
D125 B-residue_name_number
and O
E162 B-residue_name_number
of O
KRM1 B-protein
( O
Figure O
2C O
). O
A O
charge B-experimental_method
reversal I-experimental_method
as O
in O
the O
mouse B-taxonomy_domain
Dkk1 B-protein
( O
mDkk1 B-protein
) O
R197E B-mutant
variant O
would O
severely O
disrupt O
the O
binding O
. O
Similarly O
, O
the O
K226 B-residue_name_number
side O
chain O
of O
DKK1 B-protein
, O
which O
points O
to O
a O
small O
hydrophobic B-site
pocket I-site
on O
the O
surface O
of O
KRM1 B-protein
formed O
by O
Y108 B-residue_name_number
, O
W94 B-residue_name_number
, O
and O
W106 B-residue_name_number
, O
forms O
salt B-bond_interaction
bridges I-bond_interaction
with O
the O
side O
chains O
of O
KRM1 B-protein
D88 B-residue_name_number
and O
D90 B-residue_name_number
. O
Again O
, O
a O
charge B-experimental_method
reversal I-experimental_method
as O
shown O
before O
for O
mDkk1 B-protein
K232E B-mutant
would O
be O
incompatible O
with O
binding O
. O
The O
side O
chain O
of O
DKK1 B-protein
S192 B-residue_name_number
was O
also O
predicted O
to O
be O
involved O
in O
Krm B-protein_type
binding O
. O
Indeed O
, O
we O
found O
( O
Figure O
2C O
) O
that O
the O
side O
chain O
of O
D201 B-residue_name_number
of O
KRM1 B-protein
forms O
two O
hydrogen B-bond_interaction
bonds I-bond_interaction
to O
the O
side O
- O
chain O
hydroxyl O
and O
the O
backbone O
amide O
of O
S192 B-residue_name_number
( O
mouse B-taxonomy_domain
, O
S198 B-residue_name_number
). O
Additional O
polar B-bond_interaction
interactions I-bond_interaction
are O
formed O
between O
the O
N140 B-residue_name_number
, O
S163 B-residue_name_number
, O
and O
Y165 B-residue_name_number
side O
chains O
of O
KRM1 B-protein
and O
DKK1 B-protein
backbone O
carbonyls O
of O
W206 B-residue_name_number
, O
L190 B-residue_name_number
, O
and O
C189 B-residue_name_number
, O
respectively O
. O
The O
carbonyl O
of O
DKK1 B-protein
R224 B-residue_name_number
is O
hydrogen B-bond_interaction
bonded I-bond_interaction
to O
Y105 B-residue_name_number
and O
W106 B-residue_name_number
of O
KRM1 B-protein
. O
We O
suspect O
that O
the O
Dkk B-protein_type
charge B-experimental_method
reversal I-experimental_method
mutations I-experimental_method
performed O
in O
the O
murine B-taxonomy_domain
background O
and O
shown O
to O
diminish O
Krm B-protein_type
binding O
K211E B-mutant
and O
R203E B-mutant
( O
mouse B-taxonomy_domain
K217E B-mutant
and O
R209E B-mutant
) O
do O
so O
likely O
indirectly O
by O
disruption O
of O
the O
Dkk B-protein_type
fold O
. O
We O
further O
validated O
the O
DKK1 B-site
binding I-site
site I-site
on O
KRM1 B-protein
by O
introducing B-experimental_method
glycosylation B-site
sites I-site
at O
the O
KR B-structure_element
( O
90DVS92 B-mutant
I-mutant
NVS I-mutant
) O
and O
WSC B-structure_element
( O
189VCF191 B-mutant
I-mutant
NCS I-mutant
) O
domains O
pointing O
toward O
DKK B-protein
( O
Figures O
2A O
and O
2D O
). O
Introduction O
of O
N B-ptm
- I-ptm
linked I-ptm
glycans I-ptm
in O
protein B-site
- I-site
protein I-site
- I-site
binding I-site
sites I-site
is O
an O
established O
way O
of O
disrupting O
protein B-site
- I-site
binding I-site
interfaces I-site
. O
Both O
ectodomain B-structure_element
mutants B-protein_state
were O
secreted O
comparably O
with O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
, O
indicating O
correct O
folding O
, O
but O
failed O
to O
achieve O
any O
detectable O
binding O
in O
SPR B-experimental_method
using O
full B-protein_state
- I-protein_state
length I-protein_state
DKK1 B-protein
as O
analyte O
. O
In O
contrast O
, O
a O
mutant B-protein_state
carrying O
an O
additional O
N B-ptm
- I-ptm
glycan I-ptm
outside O
the O
interface B-site
at O
the O
CUB B-structure_element
domain O
( O
309NQA311 B-mutant
I-mutant
NQS I-mutant
), O
was O
wild B-protein_state
- I-protein_state
type I-protein_state
- O
like O
in O
DKK1 B-protein
binding O
( O
Figure O
2D O
). O
Identification O
of O
a O
Direct O
LRP6 B-site
- I-site
KRM1 I-site
Binding I-site
Site I-site
The O
LRP6PE3PE4 B-complex_assembly
- I-complex_assembly
DKK1CRD2 I-complex_assembly
- I-complex_assembly
KRM1ECD I-complex_assembly
complex O
structure B-evidence
reveals O
no O
direct O
interactions O
between O
KRM1 B-protein
and O
LRP6 B-protein
. O
We O
constructed O
in O
silico O
a O
ternary O
complex B-protein_state
with I-protein_state
a O
close O
to O
full B-protein_state
- I-protein_state
length I-protein_state
LRP6 B-protein
ectodomain B-structure_element
( O
PE1PE2PE3PE4 B-structure_element
horse B-structure_element
shoe I-structure_element
) O
similar O
to O
but O
without O
refinement O
against O
electron B-experimental_method
microscopy I-experimental_method
( O
EM B-experimental_method
) O
or O
small B-experimental_method
- I-experimental_method
angle I-experimental_method
X I-experimental_method
- I-experimental_method
ray I-experimental_method
scattering I-experimental_method
data O
. O
An O
auxiliary O
PE3PE4 B-structure_element
fragment O
was O
superimposed B-experimental_method
via O
PE4 B-structure_element
onto O
PE3 B-structure_element
of O
the O
crystal B-evidence
structure I-evidence
, O
and O
the O
LRP6PE1PE2 B-protein
structure B-evidence
was O
superimposed B-experimental_method
via O
PE2 B-structure_element
onto O
PE3 B-structure_element
of O
this O
auxiliary O
fragment O
( O
Figure O
3A O
). O
For O
this O
crude O
approximation O
of O
a O
true O
ternary O
complex O
, O
we O
noted O
very O
close O
proximity O
between O
the O
Ca2 B-site
+- I-site
binding I-site
region I-site
of O
KRM1 B-protein
and O
the O
top O
face O
of O
the O
PE2 B-structure_element
β B-structure_element
propeller I-structure_element
of O
LRP6 B-protein
. O
The O
solvent B-protein_state
- I-protein_state
exposed I-protein_state
residues O
R307 B-residue_name_number
, O
I308 B-residue_name_number
, O
and O
N309 B-residue_name_number
of O
the O
central O
Ca2 B-structure_element
+- I-structure_element
binding I-structure_element
β I-structure_element
connection I-structure_element
loop I-structure_element
of O
KRM1 B-protein
would O
be O
almost O
ideally O
positioned O
for O
binding O
to O
this O
face O
, O
which O
is O
commonly O
used O
as O
a O
binding B-site
site I-site
on O
β B-structure_element
propellers I-structure_element
. O
Peptides O
containing O
arginine B-residue_name
/ O
lysine B-residue_name
, O
isoleucine B-residue_name
, O
and O
asparagine B-residue_name
( O
consensus O
sequence O
N B-structure_element
- I-structure_element
X I-structure_element
- I-structure_element
I I-structure_element
-( I-structure_element
G I-structure_element
)- I-structure_element
R I-structure_element
/ I-structure_element
K I-structure_element
) O
are O
also O
employed O
by O
DKK1 B-protein
and O
SOST B-protein
to O
bind O
to O
LRP6 B-protein
( O
albeit O
to O
propeller B-structure_element
1 I-structure_element
; O
Figure O
3B O
). O
To O
support O
the O
hypothesis O
that O
KRM1CUB B-protein
binds B-protein_state
to I-protein_state
LRP6PE2 B-protein
, O
we O
used O
SPR B-experimental_method
and O
compared O
binding O
of O
the O
wild B-protein_state
- I-protein_state
type I-protein_state
and O
the O
GlycoCUB B-protein_state
mutant I-protein_state
of O
KRM1ECD B-protein
( O
bearing O
an O
N B-site
- I-site
glycosylation I-site
site I-site
at O
N309 B-residue_name_number
) O
with O
a O
purified O
LRP6PE1PE2 B-protein
fragment O
. O
Indeed O
, O
we O
found O
that O
in O
the O
absence B-protein_state
of I-protein_state
Dkk B-protein_type
, O
KRM1ECD B-protein
bound B-protein_state
with O
considerable O
affinity O
to B-protein_state
LRP6PE1PE2 B-protein
( O
Figure O
3C O
). O
In O
contrast O
, O
no O
saturable O
binding O
was O
observed O
between O
KRM1 B-protein
and O
LRP6PE3PE4 B-protein
. O
Introduction B-experimental_method
of I-experimental_method
an O
N B-site
- I-site
glycosylation I-site
site I-site
at O
N309 B-residue_name_number
in O
KRM1ECD B-protein
abolished O
LRP6PE1PE2 B-protein
binding O
( O
Figure O
3C O
), O
while O
binding O
to O
DKK1 B-protein
was O
unaffected O
( O
Figure O
2D O
). O
We O
conclude O
that O
the O
predicted O
binding B-site
site I-site
between O
KRM1CUB B-protein
and O
LRP6PE2 B-protein
is O
a O
strong O
candidate O
for O
mediating O
the O
direct O
Lrp6 B-complex_assembly
- I-complex_assembly
Krm I-complex_assembly
interaction O
, O
which O
is O
thought O
to O
increase O
Wnt B-protein_type
responsiveness O
by O
stabilizing O
Lrp6 B-protein
at O
the O
cell O
surface O
. O
Further O
experiments O
are O
required O
to O
pinpoint O
the O
exact O
binding B-site
site I-site
. O
Although O
LRP6PE1 B-protein
appears O
somewhat O
out O
of O
reach O
in O
the O
modeled O
ternary O
complex O
, O
it O
cannot O
be O
excluded O
as O
the O
Krm B-site
binding I-site
site I-site
in O
the O
ternary O
complex O
and O
LRP6 B-complex_assembly
- I-complex_assembly
Krm I-complex_assembly
binary O
complex O
. O
The O
presence B-protein_state
of I-protein_state
DKK B-protein
may O
govern O
which O
propeller B-structure_element
( O
PE1 B-structure_element
versus O
PE2 B-structure_element
) O
of O
LRP6 B-protein
is O
available O
for O
Krm B-protein_type
binding O
. O
Apparent O
binding O
across O
the O
proposed O
KRM1CUB B-site
- I-site
LRP6PE2 I-site
interface I-site
is O
expected O
to O
be O
higher O
once O
Krm B-protein_type
is O
also O
cross O
- O
linked O
to O
LRP6PE3 B-protein
via O
DKK1CRD2 B-protein
( O
Figure O
3D O
). O
Low O
- O
resolution O
negative B-experimental_method
- I-experimental_method
stain I-experimental_method
EM I-experimental_method
and O
small B-experimental_method
- I-experimental_method
angle I-experimental_method
X I-experimental_method
- I-experimental_method
ray I-experimental_method
scattering I-experimental_method
studies O
of O
LRP6PE1PE2PE3PE4 B-protein
, O
in B-protein_state
isolation I-protein_state
and O
in B-protein_state
complex I-protein_state
with I-protein_state
Dkk1 B-protein_type
, O
plus O
negative B-experimental_method
- I-experimental_method
stain I-experimental_method
EM I-experimental_method
of O
full B-protein_state
- I-protein_state
length I-protein_state
LRP6 B-protein
ectodomain B-structure_element
, O
have O
indicated O
curved B-protein_state
, O
platform B-protein_state
- I-protein_state
like I-protein_state
conformations O
but O
also O
potential O
flexibility O
between O
PE2 B-structure_element
and O
PE3 B-structure_element
. O
It O
is O
therefore O
possible O
that O
the O
interplay O
of O
Krm B-protein_type
and O
Dkk B-protein_type
binding O
can O
promote O
changes O
in O
LRP6 B-protein
ectodomain B-structure_element
conformation O
with O
functional O
consequences O
; O
however O
, O
such O
ideas O
await O
investigation O
. O
Taken O
together O
, O
the O
structural B-experimental_method
and I-experimental_method
biophysical I-experimental_method
studies I-experimental_method
we O
report O
here O
extend O
our O
mechanistic O
understanding O
of O
Wnt B-protein_type
signal O
regulation O
. O
We O
describe O
the O
ectodomain B-structure_element
structure B-evidence
of O
the O
dual O
Wnt B-protein_type
regulator O
Krm1 B-protein_type
, O
providing O
an O
explanation O
for O
the O
detrimental O
effect O
on O
health O
and O
development O
of O
a O
homozygous O
KRM1 B-protein
mutation O
. O
We O
also O
reveal O
the O
interaction O
mode O
of O
Krm B-complex_assembly
- I-complex_assembly
Dkk I-complex_assembly
and O
the O
architecture O
of O
the O
ternary O
complex O
formed O
by O
Lrp5 B-protein_type
/ I-protein_type
6 I-protein_type
, O
Dkk B-protein_type
, O
and O
Krm B-protein_type
. O
Furthermore O
, O
the O
ternary O
crystal B-evidence
structure I-evidence
has O
guided O
in B-experimental_method
silico I-experimental_method
and I-experimental_method
biophysical I-experimental_method
analyses I-experimental_method
to O
suggest O
a O
direct O
LRP6 B-site
- I-site
KRM1 I-site
interaction I-site
site I-site
. O
Our O
findings O
provide O
a O
solid O
foundation O
for O
additional O
studies O
to O
probe O
how O
ternary O
complex O
formation O
triggers O
internalization O
, O
whereas O
Krm B-protein_type
binding O
in O
the O
absence B-protein_state
of I-protein_state
Dkk B-protein_type
stabilizes O
the O
Wnt B-protein_type
co B-protein_type
- I-protein_type
receptor I-protein_type
at O
the O
cell O
surface O
. O
Structure B-evidence
of O
Unliganded B-protein_state
KRM1ECD B-protein
( O
A O
) O
The O
KRM1ECD B-protein
fold O
( O
crystal B-evidence
form I-evidence
I I-evidence
) O
colored O
blue O
to O
red O
from O
the O
N O
to O
C O
terminus O
. O
Cysteines B-residue_name
as O
ball O
and O
sticks O
, O
glycosylation B-site
sites I-site
as O
sticks O
. O
The O
bound O
calcium B-chemical
is O
shown O
as O
a O
gray O
sphere O
. O
The O
site O
of O
the O
F207S B-mutant
mutation O
associated O
with O
ectodermal O
dysplasia O
in O
humans B-species
is O
shown O
as O
mesh O
. O
( O
B O
) O
Superposition B-experimental_method
of O
the O
three O
KRM1ECD B-protein
subdomains O
( O
solid O
) O
with O
their O
next O
structurally O
characterized O
homologs O
( O
half O
transparent O
). O
( O
C O
) O
Superposition B-experimental_method
of O
KRM1ECD B-protein
from O
the O
three O
crystal B-evidence
forms I-evidence
. O
Alignment B-evidence
scores I-evidence
for O
each O
pairing O
are O
indicated O
on O
the O
dashed O
triangle O
. O
( O
A O
) O
The O
structure B-evidence
of O
the O
ternary O
LRP6PE3PE4 B-complex_assembly
- I-complex_assembly
DKK1CRD2 I-complex_assembly
- I-complex_assembly
KRM1ECD I-complex_assembly
complex O
. O
DKK1 B-protein
( O
orange O
) O
is O
sandwiched O
between O
the O
PE3 B-structure_element
module O
of O
LRP6 B-protein
( O
blue O
) O
and O
the O
KR B-structure_element
- I-structure_element
WSC I-structure_element
domain O
pair O
of O
KRM1 B-protein
( O
green O
). O
Colored O
symbols O
indicate O
introduced O
N B-site
- I-site
glycan I-site
attachment I-site
sites I-site
( O
see O
D O
). O
( O
B O
) O
SPR B-experimental_method
data O
comparing O
binding O
of O
full B-protein_state
- I-protein_state
length I-protein_state
DKK1 B-protein
and O
SUMO B-experimental_method
fusions I-experimental_method
of O
DKK1 B-protein
truncations O
for O
binding O
to O
immobilized O
wild B-protein_state
- I-protein_state
type I-protein_state
KRM1ECD B-protein
. O
( O
C O
) O
Close O
- O
up O
view O
of O
the O
DKK1CRD2 B-site
- I-site
KRM1ECD I-site
interface I-site
. O
Residues O
involved O
in O
interface B-site
formation O
are O
shown O
as O
sticks O
; O
those O
mentioned O
in O
the O
text O
are O
labeled O
. O
Salt B-bond_interaction
bridges I-bond_interaction
are O
in O
pink O
and O
hydrogen B-bond_interaction
bonds I-bond_interaction
in O
black O
. O
( O
D O
) O
SPR B-experimental_method
binding B-evidence
data I-evidence
comparing O
DKK1 B-protein
analyte O
binding O
with O
wild B-protein_state
- I-protein_state
type I-protein_state
KRM1ECD B-protein
and O
three O
variants O
bearing O
engineered B-protein_state
glycosylation B-site
sites I-site
on O
the O
KR B-structure_element
and O
WSC B-structure_element
domains O
( O
green O
and O
blue O
pointing O
to O
DKK1 B-protein
) O
and O
on O
the O
CUB B-structure_element
domain O
( O
orange O
). O
LRP6 B-complex_assembly
- I-complex_assembly
KRM1 I-complex_assembly
Direct O
Interaction O
and O
Summary O
( O
A O
) O
In O
a O
construction O
of O
a O
ternary O
complex B-protein_state
with I-protein_state
all O
four O
β B-structure_element
propellers I-structure_element
of O
LRP6 B-protein
intact B-protein_state
, O
the O
CUB B-structure_element
domain O
points O
via O
its O
Ca2 B-site
+- I-site
binding I-site
region I-site
toward O
the O
top O
face O
of O
the O
second B-structure_element
β I-structure_element
propeller I-structure_element
. O
( O
B O
) O
Close O
- O
up O
view O
of O
the O
potential O
interaction B-site
site I-site
. O
In O
addition O
, O
LRP6PE2 B-protein
has O
been O
superimposed B-experimental_method
with O
DKK1 B-protein
( O
yellow O
) O
and O
SOST B-protein
( O
pink O
) O
peptide O
complexes O
of O
LRP6PE1 B-protein
. O
( O
C O
) O
SPR B-experimental_method
measurements I-experimental_method
comparing O
LRP6PE1PE2 B-protein
binding O
with O
wild B-protein_state
- I-protein_state
type I-protein_state
KRM1ECD B-protein
and O
the O
GlycoCUB B-protein_state
mutant I-protein_state
bearing O
an O
N B-ptm
- I-ptm
glycan I-ptm
at O
N309 B-residue_name_number
. O
( O
D O
) O
Schematic O
representation O
of O
structural O
and O
biophysical O
findings O
and O
their O
implications O
for O
Wnt B-protein_type
- O
dependent O
( O
left O
, O
middle O
) O
and O
independent O
( O
right O
) O
signaling O
. O
Conformational O
differences O
in O
the O
depictions O
of O
LRP6 B-protein
are O
included O
purely O
for O
ease O
of O
representation O
. O
Diffraction B-evidence
and I-evidence
Refinement I-evidence
Statistics I-evidence
KRM1ECD B-protein
KRM1ECD B-protein
KRM1ECD B-protein
KRM1ECD B-protein
LRP6PE3PE4 B-complex_assembly
- I-complex_assembly
DKKCRD2 I-complex_assembly
- I-complex_assembly
KRM1ECD I-complex_assembly
Crystal O
form O
I O
I O
II O
III O
I O
X O
- O
ray O
source O
Diamond O
i04 O
Diamond O
i03 O
Diamond O
i03 O
Diamond O
i04 O
Diamond O
i04 O
Wavelength O
( O
Å O
) O
0 O
. O
9793 O
0 O
. O
9700 O
0 O
. O
9700 O
0 O
. O
9795 O
0 O
. O
9795 O
Space O
group O
P3121 O
P3121 O
P43 O
P41212 O
C2221 O
Unit O
cell O
a O
/ O
α O
( O
Å O
/°) O
50 O
. O
9 O
/ O
90 O
50 O
. O
5 O
/ O
90 O
65 O
. O
8 O
/ O
90 O
67 O
. O
8 O
/ O
90 O
86 O
. O
9 O
/ O
90 O
b O
/ O
β O
( O
Å O
/°) O
50 O
. O
9 O
/ O
90 O
50 O
. O
5 O
/ O
90 O
65 O
. O
8 O
/ O
90 O
67 O
. O
8 O
/ O
90 O
100 O
. O
1 O
/ O
90 O
c O
/ O
γ O
( O
Å O
/°) O
188 O
. O
4 O
/ O
120 O
187 O
. O
4 O
/ O
120 O
75 O
. O
0 O
/ O
90 O
198 O
. O
2 O
/ O
90 O
270 O
. O
7 O
/ O
90 O
Wilson O
B O
factor O
( O
Å2 O
) O
31 O
41 O
76 O
77 O
NA O
Resolution O
range O
( O
Å O
) O
47 O
. O
10 O
O
1 O
. O
90 O
( O
1 O
. O
95 O
O
1 O
. O
90 O
) O
62 O
. O
47 O
O
2 O
. O
10 O
( O
2 O
. O
16 O
O
2 O
. O
10 O
) O
75 O
. O
00 O
O
2 O
. O
80 O
( O
2 O
. O
99 O
O
2 O
. O
80 O
) O
67 O
. O
80 O
O
3 O
. O
20 O
( O
3 O
. O
42 O
O
3 O
. O
20 O
) O
67 O
. O
68 O
O
3 O
. O
50 O
( O
7 O
. O
16 O
O
6 O
. O
40 O
, O
3 O
. O
92 O
O
3 O
. O
50 O
) O
Unique O
reflections O
23 O
, O
300 O
( O
1 O
, O
524 O
) O
17 O
, O
089 O
( O
1 O
, O
428 O
) O
7 O
, O
964 O
( O
1 O
, O
448 O
) O
8 O
, O
171 O
( O
1 O
, O
343 O
) O
8 O
, O
070 O
( O
723 O
, O
645 O
) O
Average O
multiplicity O
9 O
. O
1 O
( O
9 O
. O
2 O
) O
5 O
. O
2 O
( O
5 O
. O
3 O
) O
3 O
. O
7 O
( O
3 O
. O
7 O
) O
22 O
. O
7 O
( O
12 O
. O
6 O
) O
3 O
. O
8 O
( O
3 O
. O
5 O
, O
4 O
. O
4 O
) O
Completeness O
(%) O
99 O
. O
8 O
( O
98 O
. O
5 O
) O
100 O
( O
100 O
) O
99 O
. O
8 O
( O
100 O
) O
98 O
. O
8 O
( O
93 O
. O
4 O
) O
51 O
. O
6 O
( O
98 O
. O
5 O
, O
14 O
. O
1 O
) O
< O
I O
/ O
σI O
> O
11 O
. O
4 O
( O
1 O
. O
7 O
) O
12 O
. O
0 O
( O
1 O
. O
7 O
) O
14 O
. O
9 O
( O
1 O
. O
5 O
) O
13 O
. O
1 O
( O
1 O
. O
9 O
) O
4 O
. O
6 O
( O
4 O
. O
1 O
, O
2 O
. O
2 O
) O
Rmerge O
(%) O
14 O
. O
8 O
( O
158 O
. O
3 O
) O
9 O
. O
3 O
( O
98 O
. O
0 O
) O
6 O
. O
2 O
( O
98 O
. O
9 O
) O
29 O
. O
8 O
( O
142 O
. O
2 O
) O
44 O
. O
9 O
( O
40 O
. O
5 O
, O
114 O
. O
2 O
) O
Rpim O
(%) O
15 O
. O
7 O
( O
55 O
. O
3 O
) O
10 O
. O
3 O
( O
109 O
. O
0 O
) O
3 O
. O
7 O
( O
53 O
. O
8 O
) O
6 O
. O
3 O
( O
40 O
. O
0 O
) O
24 O
. O
7 O
( O
23 O
. O
9 O
, O
59 O
. O
9 O
) O
Refinement O
Rwork O
(%) O
17 O
. O
9 O
18 O
. O
4 O
21 O
. O
6 O
20 O
. O
2 O
32 O
. O
1 O
Rfree O
(%) O
22 O
. O
7 O
23 O
. O
2 O
30 O
. O
7 O
27 O
. O
1 O
35 O
. O
5 O
No O
. O
of O
Non O
- O
Hydrogen O
Atoms O
Protein O
2 O
, O
260 O
2 O
, O
301 O
2 O
, O
102 O
2 O
, O
305 O
7 O
, O
730 O
N O
- O
glycans O
42 O
42 O
28 O
28 O
0 O
Water B-chemical
79 O
54 O
0 O
2 O
0 O
Ligands O
6 O
6 O
2 O
5 O
0 O
Average O
B O
factor O
( O
Å2 O
) O
Protein O
63 O
65 O
108 O
84 O
O
N O
- O
glycans O
35 O
46 O
102 O
18 O
O
Water B-chemical
68 O
85 O
O
75 O
O
Ligands O
36 O
47 O
91 O
75 O
66 O
RMSD B-evidence
from O
Ideality O
Bond O
lengths O
( O
Å O
) O
0 O
. O
020 O
0 O
. O
016 O
0 O
. O
019 O
0 O
. O
016 O
0 O
. O
004 O
Bond O
angles O
(°) O
2 O
. O
050 O
1 O
. O
748 O
1 O
. O
952 O
1 O
. O
796 O
0 O
. O
770 O
Ramachandran O
Plot O
Favored O
(%) O
96 O
. O
8 O
95 O
. O
5 O
96 O
. O
9 O
94 O
. O
9 O
92 O
. O
3 O
Allowed O
(%) O
99 O
. O
7 O
100 O
. O
0 O
100 O
. O
0 O
99 O
. O
7 O
99 O
. O
8 O
Number O
of O
outliers O
1 O
0 O
0 O
1 O
2 O
PDB O
code O
5FWS O
5FWT O
5FWU O
5FWV O
5FWW O
An O
additional O
shell O
given O
for O
the O
ternary O
complex O
corresponds O
to O
the O
last O
shell O
with O
near O
- O
complete O
diffraction B-evidence
data I-evidence
. O