PMC 20201219 pmc.key 4993997 CC BY no 2 2 10.1038/srep31425 srep31425 4993997 27550639 31425 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ surname:Chen;given-names:Ji-Yun surname:Liu;given-names:Liang surname:Cao;given-names:Chun-Ling surname:Li;given-names:Mei-Jun surname:Tan;given-names:Kemin surname:Yang;given-names:Xiaohan surname:Yun;given-names:Cai-Hong TITLE front 6 2016 0 Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase 0.9986351 species cleaner0 2023-09-20T09:44:21Z MESH: human 0.99922466 protein cleaner0 2023-09-20T09:44:46Z PR: Naa60 0.9991391 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.9983005 protein_type cleaner0 2023-09-20T09:44:30Z MESH: acetyltransferase ABSTRACT abstract 96 N-terminal acetylation (Nt-acetylation), carried out by N-terminal acetyltransferases (NATs), is a conserved and primary modification of nascent peptide chains. Naa60 (also named NatF) is a recently identified NAT found only in multicellular eukaryotes. This protein was shown to locate on the Golgi apparatus and mainly catalyze the Nt-acetylation of transmembrane proteins, and it also harbors lysine Nε-acetyltransferase (KAT) activity to catalyze the acetylation of lysine ε-amine. Here, we report the crystal structures of human Naa60 (hNaa60) in complex with Acetyl-Coenzyme A (Ac-CoA) or Coenzyme A (CoA). The hNaa60 protein contains an amphipathic helix following its GNAT domain that may contribute to Golgi localization of hNaa60, and the β7-β8 hairpin adopted different conformations in the hNaa60(1-242) and hNaa60(1-199) crystal structures. Remarkably, we found that the side-chain of Phe 34 can influence the position of the coenzyme, indicating a new regulatory mechanism involving enzyme, co-factor and substrates interactions. Moreover, structural comparison and biochemical studies indicated that Tyr 97 and His 138 are key residues for catalytic reaction and that a non-conserved β3-β4 long loop participates in the regulation of hNaa60 activity. 0.9378259 ptm cleaner0 2023-09-20T09:45:03Z MESH: N-terminal acetylation 0.9623558 ptm cleaner0 2023-09-20T09:45:09Z MESH: Nt-acetylation 0.99854547 protein_type cleaner0 2023-09-20T09:45:16Z MESH: N-terminal acetyltransferases 0.99888486 protein_type cleaner0 2023-09-20T09:45:21Z MESH: NATs chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.9994029 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.99875224 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.99907637 protein_type cleaner0 2023-09-20T09:45:27Z MESH: NAT 0.97256976 taxonomy_domain cleaner0 2023-09-20T09:45:39Z DUMMY: multicellular eukaryotes 0.96585155 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9983275 protein_type cleaner0 2023-09-20T09:45:49Z MESH: lysine Nε-acetyltransferase 0.99864644 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.99024945 ptm cleaner0 2023-09-20T09:48:10Z MESH: acetylation 0.99478674 residue_name cleaner0 2023-09-20T09:46:13Z SO: lysine 0.9975256 evidence cleaner0 2023-09-20T09:46:33Z DUMMY: crystal structures 0.99812895 species cleaner0 2023-09-20T09:44:22Z MESH: human 0.9994475 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.99933773 protein cleaner0 2023-09-20T09:46:44Z PR: hNaa60 0.99842304 protein_state cleaner0 2023-09-20T09:46:53Z DUMMY: in complex with 0.99915624 chemical cleaner0 2023-09-20T09:46:59Z CHEBI: Acetyl-Coenzyme A 0.9992083 chemical cleaner0 2023-09-20T09:47:03Z CHEBI: Ac-CoA 0.99916434 chemical cleaner0 2023-09-20T09:47:09Z CHEBI: Coenzyme A 0.999223 chemical cleaner0 2023-09-20T09:47:14Z CHEBI: CoA 0.99931455 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 structure_element SO: cleaner0 2023-09-20T10:27:48Z amphipathic helix 0.99922186 structure_element cleaner0 2023-09-20T12:29:42Z SO: GNAT domain 0.9993635 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.99896705 structure_element cleaner0 2023-09-20T09:47:45Z SO: β7-β8 hairpin 0.9745685 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.89123774 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 mutant MESH: cleaner0 2023-09-20T12:32:03Z hNaa60(1-199) 0.9984098 evidence cleaner0 2023-09-20T09:46:33Z DUMMY: crystal structures 0.99716777 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 chemical CHEBI: cleaner0 2023-09-20T10:13:42Z coenzyme 0.98665667 experimental_method cleaner0 2023-09-20T12:35:25Z MESH: structural comparison and biochemical studies 0.9976251 residue_name_number cleaner0 2023-09-20T09:47:55Z DUMMY: Tyr 97 0.9974098 residue_name_number cleaner0 2023-09-20T09:48:00Z DUMMY: His 138 0.9988678 protein_state cleaner0 2023-09-20T12:26:22Z DUMMY: non-conserved 0.99922025 structure_element cleaner0 2023-09-20T09:47:50Z SO: β3-β4 long loop 0.9993338 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 INTRO paragraph 1386 Acetylation is one of the most ubiquitous modifications that plays a vital role in many biological processes, such as transcriptional regulation, protein-protein interaction, enzyme activity, protein stability, antibiotic resistance, biological rhythm and so on. Protein acetylation can be grouped into lysine Nε-acetylation and peptide N-terminal acetylation (Nt-acetylation). Generally, Nε-acetylation refers to the transfer of an acetyl group from an acetyl coenzyme A (Ac-CoA) to the ε-amino group of lysine. This kind of modification is catalyzed by lysine acetyltransferases (KATs), some of which are named histone acetyltransferases (HATs) because early studies focused mostly on the post-transcriptional acetylation of histones. 0.9899558 ptm cleaner0 2023-09-20T09:48:10Z MESH: Acetylation 0.9891585 ptm cleaner0 2023-09-20T09:48:10Z MESH: acetylation ptm MESH: cleaner0 2023-09-20T12:24:40Z lysine Nε-acetylation chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide ptm MESH: cleaner0 2023-09-20T09:45:03Z N-terminal acetylation 0.9702212 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.97078913 ptm cleaner0 2023-09-20T09:48:53Z MESH: Nε-acetylation chemical CHEBI: cleaner0 2023-09-20T11:19:06Z acetyl 0.9988362 chemical cleaner0 2023-09-20T10:13:57Z CHEBI: acetyl coenzyme A 0.9988877 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.9945634 residue_name cleaner0 2023-09-20T12:24:44Z SO: lysine 0.9981992 protein_type cleaner0 2023-09-20T09:49:17Z MESH: lysine acetyltransferases 0.9988122 protein_type cleaner0 2023-09-20T09:49:22Z MESH: KATs 0.9982982 protein_type cleaner0 2023-09-20T09:49:28Z MESH: histone acetyltransferases 0.9989518 protein_type cleaner0 2023-09-20T09:49:33Z MESH: HATs 0.97209585 ptm cleaner0 2023-09-20T09:48:10Z MESH: acetylation 0.66079366 protein_type cleaner0 2023-09-20T09:49:40Z MESH: histones INTRO paragraph 2141 Despite the prominent accomplishments in the field regarding Nε-acetylation by KATs for over 50 years, the significance of the more evolutionarily conserved Nt-acetylation is still inconclusive. Nt-acetylation is an abundant and evolutionarily conserved modification occurring in bacteria, archaea and eukaryotes. It is estimated that about 80–90% of soluble human proteins and 50–70% of yeast proteins are subjected to Nt-acetylation, where an acetyl moiety is transferred from Ac-CoA to the α-amino group of the first residue. Recently Nt-acetylome expands the Nt-acetylation to transmembrane proteins. Unlike Nε-acetylation that can be eliminated by deacetylases, Nt-acetylation is considered irreversible since no corresponding deacetylase is found to date. Although Nt-acetylation has been regarded as a co-translational modification traditionally, there is evidence that post-translational Nt-acetylation exists. During the past decades, a large number of Nt-acetylome researches have shed light on the functional roles of Nt-acetylation, including protein degradation, subcellular localization, protein-protein interaction, protein-membrane interaction, plant development, stress-response and protein stability. 0.9743493 ptm cleaner0 2023-09-20T09:48:54Z MESH: Nε-acetylation 0.99807125 protein_type cleaner0 2023-09-20T09:49:23Z MESH: KATs 0.9756705 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.97530127 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9987232 taxonomy_domain cleaner0 2023-09-20T12:24:05Z DUMMY: bacteria 0.9986106 taxonomy_domain cleaner0 2023-09-20T12:24:08Z DUMMY: archaea 0.9983525 taxonomy_domain cleaner0 2023-09-20T12:24:11Z DUMMY: eukaryotes 0.9985355 species cleaner0 2023-09-20T09:44:22Z MESH: human 0.9988913 taxonomy_domain cleaner0 2023-09-20T09:50:01Z DUMMY: yeast 0.97266906 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.7109769 chemical cleaner0 2023-09-20T11:19:06Z CHEBI: acetyl 0.99906653 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.96215796 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9716828 ptm cleaner0 2023-09-20T09:48:54Z MESH: Nε-acetylation 0.99580246 protein_type cleaner0 2023-09-20T09:50:49Z MESH: deacetylases 0.97022635 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.90664417 protein_state cleaner0 2023-09-20T12:26:48Z DUMMY: irreversible 0.9765928 protein_type cleaner0 2023-09-20T09:50:37Z MESH: deacetylase 0.9757602 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9744993 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9702752 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.99510866 taxonomy_domain cleaner0 2023-09-20T09:51:24Z DUMMY: plant INTRO paragraph 3376 The Nt-acetylation is carried out by N-terminal acetyltransferases (NATs) that belong to the GNAT superfamily. To date, six NATs (NatA/B/C/D/E/F) have been identified in eukaryotes. About 40 percent of Nt-acetylation of soluble proteins in cells is catalyzed by NatA complex which is composed of the catalytic subunit Naa10p and the auxiliary subunit Naa15p. NatE was found to physically interact with the NatA complex without any observation of impact on NatA-activity. Two other multimeric complexes of NATs are NatB and NatC which contain the catalytic subunits Naa20 and Naa30 and the auxiliary subunits Naa25 and Naa35/Naa38, respectively. Furthermore, only the catalytic subunits Naa40 and Naa60 were found for NatD and NatF, respectively. Besides Nt-acetylation, accumulating reports have proposed Nε-acetylation carried out by NATs. 0.9635632 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.99842566 protein_type cleaner0 2023-09-20T09:45:16Z MESH: N-terminal acetyltransferases 0.9991702 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.9988775 protein_type cleaner0 2023-09-20T09:51:39Z MESH: GNAT superfamily 0.99918216 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.9953088 complex_assembly cleaner0 2023-09-20T09:54:46Z GO: NatA 0.9346398 complex_assembly cleaner0 2023-09-20T09:59:09Z GO: B complex_assembly GO: cleaner0 2023-09-20T09:59:27Z C 0.8967032 complex_assembly cleaner0 2023-09-20T09:59:37Z GO: D complex_assembly GO: cleaner0 2023-09-20T09:59:50Z E 0.5994063 complex_assembly cleaner0 2023-09-20T10:02:21Z GO: F 0.99849737 taxonomy_domain cleaner0 2023-09-20T12:24:16Z DUMMY: eukaryotes 0.96252584 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9793975 complex_assembly cleaner0 2023-09-20T09:54:46Z GO: NatA 0.99895537 protein cleaner0 2023-09-20T09:52:15Z PR: Naa10p 0.99897397 protein cleaner0 2023-09-20T09:52:20Z PR: Naa15p 0.9929033 complex_assembly cleaner0 2023-09-20T10:00:05Z GO: NatE 0.5679324 complex_assembly cleaner0 2023-09-20T09:54:45Z GO: NatA 0.9276306 complex_assembly cleaner0 2023-09-20T09:54:46Z GO: NatA 0.99913484 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.9946814 complex_assembly cleaner0 2023-09-20T09:54:37Z GO: NatB 0.9961499 complex_assembly cleaner0 2023-09-20T09:54:58Z GO: NatC 0.9987263 protein cleaner0 2023-09-20T09:53:02Z PR: Naa20 0.9987482 protein cleaner0 2023-09-20T09:53:08Z PR: Naa30 0.99873227 protein cleaner0 2023-09-20T09:53:14Z PR: Naa25 0.998733 protein cleaner0 2023-09-20T09:53:19Z PR: Naa35 0.99870276 protein cleaner0 2023-09-20T09:53:23Z PR: Naa38 0.9986804 protein cleaner0 2023-09-20T09:53:28Z PR: Naa40 0.9985952 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.9984458 complex_assembly cleaner0 2023-09-20T09:55:17Z GO: NatD 0.9985499 complex_assembly cleaner0 2023-09-20T09:55:35Z GO: NatF 0.96562463 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9625132 ptm cleaner0 2023-09-20T09:48:54Z MESH: Nε-acetylation 0.99909365 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs INTRO paragraph 4223 There is an evolutionary increasing in the degree of Nt-acetylation between yeast and human which could partly be explained by the contribution of NatF. As the first N-terminal acetyltransferase discovered on an organelle, NatF, encoded by NAA60 and also named as Histone acetyltransferase type B protein 4 (HAT4), Naa60 or N-acetyltransferase 15 (NAT15), is the youngest member of the NAT family. Unlike other NATs that are highly conserved among lower and higher eukaryotes, NatF only exists in higher eukaryotes. Subsequent researches indicated that NatF displays its catalytic ability with both Nt-acetylation and lysine Nε-acetylation. As an N-terminal acetyltransferase, NatF can specifically catalyze acetylation of the N-terminal α-amine of most transmembrane proteins and has substrate preference towards proteins with Met-Lys-, Met-Val-, Met-Ala- and Met-Met-N-termini, thus partially overlapping substrate selectivity with NatC and NatE. On the other hand, NatF, with its lysine acetyltransferase activity, mediates the lysine acetylation of free histone H4, including H4K20, H4K79 and H4K91. Another important feature of NatF is that this protein is anchored on the Golgi apparatus through its C-terminal membrane-integrating region and takes part in the maintaining of Golgi integrity. With its unique intracellular organellar localization and substrate selectivity, NatF appears to provide more evolutionary information among the NAT family members. 0.9552281 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9985532 taxonomy_domain cleaner0 2023-09-20T09:50:02Z DUMMY: yeast 0.9977108 species cleaner0 2023-09-20T09:44:22Z MESH: human 0.9987839 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.99850816 protein_type cleaner0 2023-09-20T10:02:41Z MESH: N-terminal acetyltransferase 0.99880755 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.6020324 protein cleaner0 2023-09-20T09:44:47Z PR: NAA60 protein PR: cleaner0 2023-09-20T10:03:06Z Histone acetyltransferase type B protein 4 0.99775237 protein cleaner0 2023-09-20T10:03:18Z PR: HAT4 0.99884844 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 protein PR: cleaner0 2023-09-20T10:03:53Z N-acetyltransferase 15 0.9983645 protein cleaner0 2023-09-20T10:03:57Z PR: NAT15 protein_type MESH: cleaner0 2023-09-20T09:45:28Z NAT 0.999131 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.99893486 protein_state cleaner0 2023-09-20T12:26:56Z DUMMY: highly conserved 0.9907494 taxonomy_domain cleaner0 2023-09-20T12:24:19Z DUMMY: lower 0.8346692 taxonomy_domain cleaner0 2023-09-20T10:06:05Z DUMMY: higher eukaryotes 0.99874425 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.98239946 taxonomy_domain cleaner0 2023-09-20T10:06:06Z DUMMY: higher eukaryotes 0.99875 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.9238295 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation ptm MESH: cleaner0 2023-09-20T10:07:04Z lysine Nε-acetylation 0.9984901 protein_type cleaner0 2023-09-20T10:02:42Z MESH: N-terminal acetyltransferase 0.99684405 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.9915748 ptm cleaner0 2023-09-20T09:48:11Z MESH: acetylation structure_element SO: cleaner0 2023-09-20T10:14:47Z Met-Lys- structure_element SO: cleaner0 2023-09-20T10:15:08Z Met-Val- structure_element SO: cleaner0 2023-09-20T10:15:27Z Met-Ala- structure_element SO: cleaner0 2023-09-20T10:15:45Z Met-Met- 0.9971757 complex_assembly cleaner0 2023-09-20T09:54:58Z GO: NatC 0.99452823 complex_assembly cleaner0 2023-09-20T10:00:06Z GO: NatE 0.9983417 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.99512225 protein_type cleaner0 2023-09-20T10:08:12Z MESH: lysine acetyltransferase ptm MESH: cleaner0 2023-09-20T10:05:36Z lysine acetylation 0.98459953 protein_type cleaner0 2023-09-20T10:08:43Z MESH: histone 0.9713598 protein_type cleaner0 2023-09-20T10:09:13Z MESH: H4 protein_type MESH: cleaner0 2023-09-20T10:11:31Z H4 residue_name_number DUMMY: cleaner0 2023-09-20T10:11:44Z K20 protein_type MESH: cleaner0 2023-09-20T10:12:04Z H4 residue_name_number DUMMY: cleaner0 2023-09-20T10:12:28Z K79 protein_type MESH: cleaner0 2023-09-20T10:12:49Z H4 residue_name_number DUMMY: cleaner0 2023-09-20T10:13:05Z K91 0.9989195 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.9942046 structure_element cleaner0 2023-09-20T12:29:47Z SO: membrane-integrating region 0.9988495 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF protein_type MESH: cleaner0 2023-09-20T09:45:28Z NAT INTRO paragraph 5697 It was recently found that NatF facilitates nucleosomes assembly and that NAA60 knockdown in MCF7-cell inhibits cell proliferation, sensitizes cells to DNA damage and induces cell apoptosis. In Drosophila cells, NAA60 knockdown induces chromosomal segregation defects during anaphase including lagging chromosomes and chromosomal bridges. Much recent attention has also been focused on the requirement of NatF for regulation of organellar structure. In HeLa cells, NAA60 knockdown causes Golgi apparatus fragmentation which can be rescued by overexpression Naa60. The systematic investigation of publicly available microarray data showed that NATs share distinct tissue-specific expression patterns in Drosophila and NatF shows a higher expression level in central nervous system of Drosophila. 0.939754 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.9885904 complex_assembly cleaner0 2023-09-20T12:22:55Z GO: nucleosomes 0.89290154 protein cleaner0 2023-09-20T09:44:47Z PR: NAA60 0.9981092 taxonomy_domain cleaner0 2023-09-20T10:13:22Z DUMMY: Drosophila 0.7164299 protein cleaner0 2023-09-20T09:44:47Z PR: NAA60 0.9589997 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.79295474 protein cleaner0 2023-09-20T09:44:47Z PR: NAA60 0.9425036 experimental_method cleaner0 2023-09-20T10:13:29Z MESH: overexpression 0.99772257 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.9991636 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.99801564 taxonomy_domain cleaner0 2023-09-20T10:13:22Z DUMMY: Drosophila 0.9858074 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.99814355 taxonomy_domain cleaner0 2023-09-20T10:13:22Z DUMMY: Drosophila INTRO paragraph 6492 In this study, we solved the structures of human Naa60 (NatF) in complex with coenzyme. The hNaa60 protein contains a unique amphipathic α-helix (α5) following its GNAT domain that might account for the Golgi localization of this protein. Crystal structures showed that the β7-β8 hairpin rotated about 50 degrees upon removing the C-terminal region of the protein and this movement substantially changed the geometry of the substrate-binding pocket. Remarkably, we find that Phe 34 may participate in the proper positioning of the coenzyme for the transfer reaction to occur. Further structure comparison and biochemical studies also identified other key structural elements essential for the enzyme activity of Naa60. 0.9637387 experimental_method cleaner0 2023-09-20T12:35:30Z MESH: solved 0.94823563 evidence cleaner0 2023-09-20T12:25:06Z DUMMY: structures 0.9984149 species cleaner0 2023-09-20T09:44:22Z MESH: human 0.9993923 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.99935895 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.9983024 protein_state cleaner0 2023-09-20T09:46:54Z DUMMY: in complex with 0.9977319 chemical cleaner0 2023-09-20T10:13:42Z CHEBI: coenzyme 0.9993267 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 structure_element SO: cleaner0 2023-09-20T12:27:15Z amphipathic α-helix 0.9994553 structure_element cleaner0 2023-09-20T12:29:52Z SO: α5 0.99896514 structure_element cleaner0 2023-09-20T12:29:55Z SO: GNAT domain 0.99477154 evidence cleaner0 2023-09-20T09:46:33Z DUMMY: Crystal structures 0.99920386 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin structure_element SO: cleaner0 2023-09-20T12:36:24Z C-terminal region 0.99904025 site cleaner0 2023-09-20T12:39:15Z SO: substrate-binding pocket 0.9975388 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.87373805 chemical cleaner0 2023-09-20T10:13:42Z CHEBI: coenzyme 0.99868906 experimental_method cleaner0 2023-09-20T12:35:36Z MESH: structure comparison 0.9906101 experimental_method cleaner0 2023-09-20T10:15:55Z MESH: biochemical studies 0.99938595 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 RESULTS title_1 7225 Results RESULTS title_2 7233 Overall structure of hNaa60 0.9977296 evidence cleaner0 2023-09-20T10:16:08Z DUMMY: structure 0.99925464 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 RESULTS paragraph 7261 In the effort to prepare the protein for structural studies, we tried a large number of hNaa60 constructs but all failed due to heavy precipitation or aggregation. Sequence alignment of Naa60 from different species revealed a Glu-Glu-Arg (EER) versus Val-Val-Pro (VVP) sequence difference near the N-terminus of the protein in Xenopus Laevis versus Homo sapiens (Fig. 1A). Considering that terminal residues may lack higher-order structure and hydrophobic residues in this region may expose to solvent and hence cause protein aggregation, we mutated residues 4–6 from VVP to EER for the purpose of improving solubility of this protein. According to previous studies, this N-terminal region should not interfere with hNaa60’s Golgi localization. We tried many hNaa60 constructs with the three-residues mutation but only the truncated variant 1-199 and the full-length protein behaved well. We obtained the crystal of the truncated variant 1-199 in complex with CoA first, and after extensive trials we got the crystal of the full-length protein (spanning residues 1-242) in complex with Ac-CoA (Fig. 1B,C). Hereafter, all deletions or point mutants of hNaa60 we describe here are with the EER mutation. The crystal structures of hNaa60(1-242)/Ac-CoA and hNaa60(1-199)/CoA were determined by molecular replacement and refined to 1.38 Å and 1.60 Å resolution, respectively (Table 1). The electron density maps were of sufficient quality to trace residues 1-211 of hNaa60(1-242) and residues 5-199 of hNaa60(1-199). 0.99925226 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.99790084 experimental_method cleaner0 2023-09-20T12:35:39Z MESH: Sequence alignment 0.9993876 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 structure_element SO: cleaner0 2023-09-20T10:18:40Z Glu-Glu-Arg 0.50987583 structure_element cleaner0 2023-09-20T10:18:49Z SO: EER structure_element SO: cleaner0 2023-09-20T10:19:16Z Val-Val-Pro 0.8827366 structure_element cleaner0 2023-09-20T10:19:25Z SO: VVP 0.99861956 species cleaner0 2023-09-20T10:20:02Z MESH: Xenopus Laevis 0.9984832 species cleaner0 2023-09-20T10:20:07Z MESH: Homo sapiens 0.9906036 experimental_method cleaner0 2023-09-20T12:35:43Z MESH: mutated 0.9951412 residue_range cleaner0 2023-09-20T12:32:10Z DUMMY: 4–6 mutant MESH: cleaner0 2023-09-20T10:18:21Z VVP to EER 0.9993231 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.99922884 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.8594266 experimental_method cleaner0 2023-09-20T10:21:06Z MESH: mutation 0.99651885 protein_state cleaner0 2023-09-20T10:20:13Z DUMMY: truncated 0.905786 residue_range cleaner0 2023-09-20T10:20:33Z DUMMY: 1-199 0.99910736 protein_state cleaner0 2023-09-20T10:20:18Z DUMMY: full-length 0.9986326 evidence cleaner0 2023-09-20T12:25:10Z DUMMY: crystal 0.9977609 protein_state cleaner0 2023-09-20T10:20:13Z DUMMY: truncated residue_range DUMMY: cleaner0 2023-09-20T10:20:54Z 1-199 0.99388075 protein_state cleaner0 2023-09-20T09:46:54Z DUMMY: in complex with 0.998934 chemical cleaner0 2023-09-20T09:47:14Z CHEBI: CoA 0.99869686 evidence cleaner0 2023-09-20T12:25:15Z DUMMY: crystal 0.99911183 protein_state cleaner0 2023-09-20T10:20:19Z DUMMY: full-length 0.9829355 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 0.9957215 protein_state cleaner0 2023-09-20T09:46:54Z DUMMY: in complex with 0.9988327 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA protein_state DUMMY: cleaner0 2023-09-20T10:56:38Z mutants 0.99930966 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.6943366 structure_element cleaner0 2023-09-20T10:19:33Z SO: EER experimental_method MESH: cleaner0 2023-09-20T10:21:07Z mutation 0.99876124 evidence cleaner0 2023-09-20T09:46:33Z DUMMY: crystal structures complex_assembly GO: cleaner0 2023-09-20T10:21:34Z hNaa60(1-242)/Ac-CoA complex_assembly GO: cleaner0 2023-09-20T10:21:53Z hNaa60(1-199)/CoA 0.9986177 experimental_method cleaner0 2023-09-20T10:17:32Z MESH: molecular replacement 0.9987355 evidence cleaner0 2023-09-20T10:45:31Z DUMMY: electron density maps 0.9942498 residue_range cleaner0 2023-09-20T12:32:15Z DUMMY: 1-211 0.8964569 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:16:33Z 1-242 0.99425864 residue_range cleaner0 2023-09-20T12:32:40Z DUMMY: 5-199 mutant MESH: cleaner0 2023-09-20T12:32:35Z hNaa60(1-199) RESULTS paragraph 8783 The structure of hNaa60 protein contains a central domain exhibiting a classic GCN5-related N-acetyltransferase (GNAT) folding, along with the extended N- and C-terminal regions (Fig. 1B,C). The central domain includes nine β strands (β1-β9) and four α-helixes (α1-α4) and is highly similar to the known hNaa50p and other reported NATs (Fig. 1D). However, in hNaa60, there is an extra 20-residue loop between β3 and β4 that forms a small subdomain with well-defined 3D structure (Fig. 1B–D). Furthermore, the β7-β8 strands form an approximately antiparallel β-hairpin structure remarkably different from that in hNaa50p (Fig. 1D). The N- and C-terminal regions form helical structures (α0 and α5) stretching out from the central GCN5-domain (Fig. 1C). 0.9957825 evidence cleaner0 2023-09-20T10:22:18Z DUMMY: structure 0.9993191 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.99772197 structure_element cleaner0 2023-09-20T10:22:27Z SO: central domain 0.9719784 protein_type cleaner0 2023-09-20T10:22:09Z MESH: GCN5-related N-acetyltransferase 0.9992061 protein_type cleaner0 2023-09-20T10:22:13Z MESH: GNAT 0.7512091 protein_state cleaner0 2023-09-20T10:26:37Z DUMMY: extended 0.9954179 structure_element cleaner0 2023-09-20T10:26:09Z SO: N- and C-terminal regions 0.9985126 structure_element cleaner0 2023-09-20T10:22:27Z SO: central domain 0.9941509 structure_element cleaner0 2023-09-20T10:22:47Z SO: β strands 0.9976589 structure_element cleaner0 2023-09-20T12:30:00Z SO: β1-β9 0.98797673 structure_element cleaner0 2023-09-20T10:26:00Z SO: α-helixes 0.99689 structure_element cleaner0 2023-09-20T10:26:03Z SO: α1-α4 0.99236286 protein_state cleaner0 2023-09-20T10:26:40Z DUMMY: highly similar 0.99932754 protein cleaner0 2023-09-20T12:20:44Z PR: hNaa50p 0.99929893 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.9993673 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.9921711 structure_element cleaner0 2023-09-20T10:25:51Z SO: extra 20-residue loop 0.999292 structure_element cleaner0 2023-09-20T10:25:54Z SO: β3 0.9991374 structure_element cleaner0 2023-09-20T10:25:56Z SO: β4 0.9988525 structure_element cleaner0 2023-09-20T10:26:28Z SO: small subdomain 0.99903136 structure_element cleaner0 2023-09-20T12:30:04Z SO: β7-β8 strands 0.9855807 structure_element cleaner0 2023-09-20T10:22:43Z SO: approximately antiparallel β-hairpin structure 0.99932003 protein cleaner0 2023-09-20T12:20:49Z PR: hNaa50p 0.9703472 structure_element cleaner0 2023-09-20T10:26:08Z SO: N- and C-terminal regions 0.8584138 structure_element cleaner0 2023-09-20T10:26:14Z SO: helical structures 0.99945825 structure_element cleaner0 2023-09-20T10:25:49Z SO: α0 0.9993788 structure_element cleaner0 2023-09-20T10:25:46Z SO: α5 0.99567384 structure_element cleaner0 2023-09-20T10:25:42Z SO: GCN5-domain RESULTS paragraph 9579 Interestingly, we found that the catalytic activity of hNaa60(1-242) is much lower than that of hNaa60(1-199) (Figure S1), indicating that residues 200–242 may have some auto-inhibitory effect on the activity of the enzyme. However, since this region was not visible in the hNaa60(1-242) crystal structure, we do not yet understand how this happens. Another possibility is that since hNaa60 is localized on Golgi apparatus, the observed low activity of the full-length hNaa60 might be related to lack of Golgi localization of the enzyme in our in vitro studies. For the convenience of studying the kinetics of mutants, the mutagenesis studies described hereafter were all based on hNaa60 (1-199). 0.9958061 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.993637 residue_range cleaner0 2023-09-20T10:24:01Z DUMMY: 1-242 mutant MESH: cleaner0 2023-09-20T10:24:44Z hNaa60(1-199) 0.99601203 residue_range cleaner0 2023-09-20T12:33:07Z DUMMY: 200–242 protein PR: cleaner0 2023-09-20T09:46:45Z hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:24:08Z 1-242 0.99869287 evidence cleaner0 2023-09-20T10:33:46Z DUMMY: crystal structure 0.99932134 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.99910516 protein_state cleaner0 2023-09-20T10:20:19Z DUMMY: full-length 0.9993279 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 protein_state DUMMY: cleaner0 2023-09-20T10:56:38Z mutants experimental_method MESH: cleaner0 2023-09-20T10:25:37Z mutagenesis studies mutant MESH: cleaner0 2023-09-20T12:33:03Z hNaa60 (1-199) RESULTS title_2 10278 An amphipathic α-helix in the C-terminal region may contribute to Golgi localization of hNaa60 structure_element SO: cleaner0 2023-09-20T12:27:40Z amphipathic α-helix 0.996947 structure_element cleaner0 2023-09-20T12:30:08Z SO: C-terminal region 0.9990615 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 RESULTS paragraph 10377 There is one hNaa60 molecule in the asymmetric unit in the hNaa60(1-242)/Ac-CoA structure. The C-terminal region extended from the GCN5-domain forms an amphipathic helix (α5) and interacts with a molecule in a neighbor asymmetric unit through hydrophobic interactions between α5-helix and a hydrophobic groove between the N-terminal β1 and β3 strands of the neighbor molecule (Fig. 2A). The C-terminal extension following α5-helix forms a β-turn that wraps around and interacts with the neighbor protein molecule through hydrophobic interactions, too. In the hNaa60(1-199)/CoA structure, a part of the α5-helix is deleted due to truncation of the C-terminal region (Fig. 1B). Interestingly, the remaining residues in α5-helix still form an amphipathic helix although the hydrophobic interaction with the N-terminal hydrophobic groove of a neighbor molecule is abolished and the helix is largely exposed in solvent due to different crystal packing (Fig. 2B). 0.9991192 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.9910477 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.9924954 evidence cleaner0 2023-09-20T12:25:19Z DUMMY: structure 0.99688613 structure_element cleaner0 2023-09-20T12:30:12Z SO: C-terminal region 0.99803805 structure_element cleaner0 2023-09-20T10:25:43Z SO: GCN5-domain 0.9984503 structure_element cleaner0 2023-09-20T10:27:11Z SO: amphipathic helix 0.99945563 structure_element cleaner0 2023-09-20T12:30:16Z SO: α5 0.9969907 bond_interaction cleaner0 2023-09-20T10:26:57Z MESH: hydrophobic interactions 0.9992375 structure_element cleaner0 2023-09-20T10:27:02Z SO: α5-helix 0.99887705 site cleaner0 2023-09-20T10:27:22Z SO: hydrophobic groove 0.99939835 structure_element cleaner0 2023-09-20T10:27:14Z SO: β1 0.99835706 structure_element cleaner0 2023-09-20T10:27:17Z SO: β3 strands 0.9985872 structure_element cleaner0 2023-09-20T12:30:20Z SO: C-terminal extension 0.9992624 structure_element cleaner0 2023-09-20T10:27:03Z SO: α5-helix 0.99928707 structure_element cleaner0 2023-09-20T12:30:23Z SO: β-turn 0.9970007 bond_interaction cleaner0 2023-09-20T10:26:57Z MESH: hydrophobic interactions 0.9390323 complex_assembly cleaner0 2023-09-20T10:21:54Z GO: hNaa60(1-199)/CoA 0.99651355 evidence cleaner0 2023-09-20T12:25:24Z DUMMY: structure 0.99932104 structure_element cleaner0 2023-09-20T10:27:03Z SO: α5-helix 0.9868099 structure_element cleaner0 2023-09-20T12:30:26Z SO: C-terminal region 0.9992686 structure_element cleaner0 2023-09-20T10:27:03Z SO: α5-helix structure_element SO: cleaner0 2023-09-20T10:27:48Z amphipathic helix 0.9966192 bond_interaction cleaner0 2023-09-20T10:27:28Z MESH: hydrophobic interaction 0.9988097 site cleaner0 2023-09-20T10:27:22Z SO: hydrophobic groove 0.9987142 structure_element cleaner0 2023-09-20T10:27:42Z SO: helix evidence DUMMY: cleaner0 2023-09-20T10:44:17Z crystal packing RESULTS paragraph 11364 A recent research showed that residues 182–216 are important for the localization of hNaa60 on Golgi. According to our structure, the solvent-exposed amphipathic helix (α5) formed by residues 190-202 with an array of hydrophobic residues located on one side (Ile 190, Leu 191, Ile 194, Leu 197 and Leu 201) and hydrophilic residues on the other side (Fig. S2) might account for interaction between hNaa60 and Golgi membrane, as it is a typical structure accounting for membrane association through immersing into the lipid bi-layer with its hydrophobic side as was observed with KalSec14, Atg3, PB1-F2 etc. 0.99668574 residue_range cleaner0 2023-09-20T10:28:24Z DUMMY: 182–216 0.9992968 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.99788886 evidence cleaner0 2023-09-20T12:25:26Z DUMMY: structure 0.8807922 protein_state cleaner0 2023-09-20T10:28:17Z DUMMY: solvent-exposed 0.9991995 structure_element cleaner0 2023-09-20T10:27:48Z SO: amphipathic helix 0.99952435 structure_element cleaner0 2023-09-20T10:28:14Z SO: α5 0.99654055 residue_range cleaner0 2023-09-20T10:28:26Z DUMMY: 190-202 0.99106693 residue_name_number cleaner0 2023-09-20T10:28:30Z DUMMY: Ile 190 0.99147034 residue_name_number cleaner0 2023-09-20T10:28:34Z DUMMY: Leu 191 0.98802656 residue_name_number cleaner0 2023-09-20T10:28:39Z DUMMY: Ile 194 0.98656154 residue_name_number cleaner0 2023-09-20T10:28:44Z DUMMY: Leu 197 0.98642117 residue_name_number cleaner0 2023-09-20T10:28:48Z DUMMY: Leu 201 0.99933785 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.998835 protein cleaner0 2023-09-20T10:28:52Z PR: KalSec14 0.99882716 protein cleaner0 2023-09-20T10:28:58Z PR: Atg3 0.99903154 protein cleaner0 2023-09-20T10:29:03Z PR: PB1-F2 RESULTS title_2 11975 The β7-β8 hairpin showed alternative conformations in the hNaa60 crystal structures 0.9992194 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.9993012 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.9988344 evidence cleaner0 2023-09-20T09:46:33Z DUMMY: crystal structures RESULTS paragraph 12065 Superposition of hNaa60(1-242)/Ac-CoA, hNaa60(1-199)/CoA and hNaa50/CoA/peptide (PDB 3TFY) revealed considerable difference in the β7-β8 hairpin region despite the overall stability and similarity of the GNAT domain (Fig. 1D). In hNaa60(1-242), the β7-β8 hairpin is located in close proximity to the α1-α2 loop, creating a more compact substrate binding site than that in hNaa50, where this region adopts a more flexible loop conformation (β6-β7 loop). Upon removing the C-terminal region of hNaa60, we observed that hNaa60 (1-199) molecules pack in a different way involving the β7-β8 hairpin in the crystal, leading to about 50 degree rotation of the hairpin which moves away from the α1-α2 loop (Figs 1D and 2C). 0.99857664 experimental_method cleaner0 2023-09-20T10:29:15Z MESH: Superposition complex_assembly GO: cleaner0 2023-09-20T10:21:35Z hNaa60(1-242)/Ac-CoA complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA complex_assembly GO: cleaner0 2023-09-20T10:29:54Z hNaa50/CoA/peptide 0.9992215 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.9983855 structure_element cleaner0 2023-09-20T10:30:50Z SO: GNAT domain protein PR: cleaner0 2023-09-20T09:46:45Z hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:24:08Z 1-242 0.9992488 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.99928904 structure_element cleaner0 2023-09-20T10:30:06Z SO: α1-α2 loop 0.99894756 site cleaner0 2023-09-20T10:30:46Z SO: substrate binding site 0.9993654 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.8767676 protein_state cleaner0 2023-09-20T10:30:38Z DUMMY: flexible 0.99802077 structure_element cleaner0 2023-09-20T10:30:39Z SO: loop 0.99916404 structure_element cleaner0 2023-09-20T10:30:44Z SO: β6-β7 loop 0.9776814 experimental_method cleaner0 2023-09-20T12:35:50Z MESH: removing structure_element SO: cleaner0 2023-09-20T12:36:03Z C-terminal region 0.99934286 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.96260184 mutant cleaner0 2023-09-20T10:30:22Z MESH: hNaa60 (1-199) 0.99919236 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.9906501 evidence cleaner0 2023-09-20T10:30:57Z DUMMY: crystal 0.9992964 structure_element cleaner0 2023-09-20T10:31:01Z SO: hairpin 0.9992585 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop RESULTS paragraph 12821 This conformational change substantially altered the geometry of the substrate binding site, which could potentially change the way in which the substrate accesses the active site of the enzyme. In hNaa60(1-242), the β7-β8 hairpin covers the active site in a way similar to that observed in hNaa50, presumably leaving only one way for the substrate to access the active site, i.e. to enter from the opposite end into the same tunnel where Ac-CoA/CoA binds (Fig. 2D), which may accommodate access of a NAT substrate only. KAT activity of hNaa60 toward histone H4 has been noted in previous study, and our enzyme kinetic data also indicated that hNaa60 can acetylate H3-H4 tetramer in vitro (Figure S3). Furthermore, we analyzed the acetylation status of histone H3-H4 tetramer using mass spectrometry and observed that multiple lysine residues in the protein showed significantly increased acetylation level and changed acetylation profile upon treatment with hNaa60(1-199) (Figure S4). We also conducted liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis on a synthetic peptide (NH2-MKGKEEKEGGAR-COOH) after treatment with hNaa60(1-199), and the data confirmed that both the N-terminal α-amine and lysine side-chain ε-amine were robustly acetylated after the treatment (Table S1). Despite these observations, the mechanism for this alternative activity remains unknown. Recent structural investigation of other NATs proposed that the β6-β7 loop, corresponding to the β7-β8 hairpin in hNaa60, and the α1-α2 loop flanking the substrate-binding site of NATs, prevent the lysine side-chain of the KAT substrates from inserting into the active site. Indeed, superposition of hNaa60(1-242) structure on that of Hat1p, a typical KAT, in complex with a histone H4 peptide revealed obvious overlapping/clashing of the H4 peptide (a KAT substrate) with the β7-β8 hairpin of hNaa60(1-242) (Fig. 2D). Interestingly, in the hNaa60(1-199) crystal structure, the displaced β7-β8 hairpin opened a second way for the substrate to access the active center that would readily accommodate the binding of the H4 peptide (Fig. 2E), thus implied a potential explanation for KAT activity of this enzyme from a structural biological view. However, since hNaa60(1-242) and hNaa60(1-199) were crystallized in different crystal forms, the observed conformational change of the β7-β8 hairpin may simply be an artifact related to the different crystal packing. Whether the KAT substrates bind to the β7-β8 hairpin displaced conformation of the enzyme needs to be verified by further structural and functional studies. 0.99892837 site cleaner0 2023-09-20T12:39:21Z SO: substrate binding site 0.9988856 site cleaner0 2023-09-20T10:34:00Z SO: active site protein PR: cleaner0 2023-09-20T09:46:45Z hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:24:08Z 1-242 0.9989575 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.9989526 site cleaner0 2023-09-20T10:33:59Z SO: active site 0.9993556 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.99890995 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.9895083 site cleaner0 2023-09-20T10:34:22Z SO: tunnel 0.9991496 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.52654105 chemical cleaner0 2023-09-20T09:47:15Z CHEBI: CoA 0.998396 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.9901426 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.9993631 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 protein_type MESH: cleaner0 2023-09-20T10:08:43Z histone protein_type MESH: cleaner0 2023-09-20T10:09:14Z H4 0.9889159 evidence cleaner0 2023-09-20T10:34:10Z DUMMY: enzyme kinetic data 0.9993655 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.8513696 complex_assembly cleaner0 2023-09-20T10:32:12Z GO: H3-H4 0.99880826 oligomeric_state cleaner0 2023-09-20T11:12:21Z DUMMY: tetramer 0.7930838 ptm cleaner0 2023-09-20T09:48:11Z MESH: acetylation protein_type MESH: cleaner0 2023-09-20T10:08:43Z histone 0.72692466 complex_assembly cleaner0 2023-09-20T10:32:13Z GO: H3-H4 0.9988335 oligomeric_state cleaner0 2023-09-20T11:12:21Z DUMMY: tetramer 0.9981814 experimental_method cleaner0 2023-09-20T10:32:58Z MESH: mass spectrometry 0.9952596 residue_name cleaner0 2023-09-20T10:34:38Z SO: lysine 0.9495313 ptm cleaner0 2023-09-20T09:48:11Z MESH: acetylation ptm MESH: cleaner0 2023-09-20T09:48:11Z acetylation 0.9909189 mutant cleaner0 2023-09-20T10:32:32Z MESH: hNaa60(1-199) 0.99888533 experimental_method cleaner0 2023-09-20T10:32:48Z MESH: liquid chromatography-tandem mass spectrometry 0.9987153 experimental_method cleaner0 2023-09-20T10:32:52Z MESH: LC/MS/MS chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.99789524 chemical cleaner0 2023-09-20T10:44:50Z CHEBI: NH2-MKGKEEKEGGAR-COOH 0.8888684 mutant cleaner0 2023-09-20T10:32:44Z MESH: hNaa60(1-199) 0.99743986 residue_name cleaner0 2023-09-20T10:46:12Z SO: lysine 0.9962567 protein_state cleaner0 2023-09-20T10:56:46Z DUMMY: acetylated 0.9983908 experimental_method cleaner0 2023-09-20T12:36:13Z MESH: structural investigation 0.9988978 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.99909455 structure_element cleaner0 2023-09-20T10:34:45Z SO: β6-β7 loop 0.99905896 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.9993444 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.9989633 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.9989281 site cleaner0 2023-09-20T10:34:06Z SO: substrate-binding site 0.9987394 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.997329 residue_name cleaner0 2023-09-20T10:34:40Z SO: lysine 0.9987423 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.99890816 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.99894637 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: superposition protein PR: cleaner0 2023-09-20T09:46:45Z hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:24:08Z 1-242 0.9969476 evidence cleaner0 2023-09-20T12:25:34Z DUMMY: structure 0.99935585 protein cleaner0 2023-09-20T10:34:33Z PR: Hat1p 0.9983606 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT protein_state DUMMY: cleaner0 2023-09-20T09:46:54Z in complex with protein_type MESH: cleaner0 2023-09-20T10:08:43Z histone 0.9293514 protein_type cleaner0 2023-09-20T10:09:14Z MESH: H4 chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.967235 protein_type cleaner0 2023-09-20T10:09:14Z MESH: H4 chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.99818367 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.99903166 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.816104 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:24:08Z 1-242 0.9869049 mutant cleaner0 2023-09-20T10:33:42Z MESH: hNaa60(1-199) 0.99701905 evidence cleaner0 2023-09-20T10:33:45Z DUMMY: crystal structure 0.9991168 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.9987036 site cleaner0 2023-09-20T10:34:26Z SO: active center 0.9238186 protein_type cleaner0 2023-09-20T10:09:14Z MESH: H4 chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.99092954 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.56263703 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.98358345 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 protein PR: cleaner0 2023-09-20T09:46:45Z hNaa60 experimental_method MESH: cleaner0 2023-09-20T10:43:57Z crystallized evidence DUMMY: cleaner0 2023-09-20T10:43:36Z crystal forms structure_element SO: cleaner0 2023-09-20T09:47:46Z β7-β8 hairpin evidence DUMMY: cleaner0 2023-09-20T10:44:16Z crystal packing protein_type MESH: cleaner0 2023-09-20T09:45:54Z KAT structure_element SO: cleaner0 2023-09-20T09:47:46Z β7-β8 hairpin experimental_method MESH: cleaner0 2023-09-20T10:44:28Z structural and functional studies RESULTS title_2 15485 Phe 34 facilitates proper positioning of the cofactor for acetyl-transfer 0.9979638 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 chemical CHEBI: cleaner0 2023-09-20T11:19:06Z acetyl RESULTS paragraph 15559 The electron density of Phe 34 side-chain is well defined in the hNaa60(1-242)/Ac-CoA structure, but becomes invisible in the hNaa60(1-199)/CoA structure, indicating displacement of the Phe 34 side-chain in the latter (Fig. 3A,B). A solvent-derived malonate molecule is found beside Phe 34 and the ethanethioate moiety of Ac-CoA in the high-resolution hNaa60(1-242)/Ac-CoA structure (Fig. 3A). Superposition of this structure on that of hNaa50p/CoA/peptide shows that the malonate molecule overlaps well on the N-terminal methionine of the substrate peptide and residue Phe 34 in hNaa60 overlaps well on Phe 27 in hNaa50 (Fig. 4A). Interestingly, in the structure of hNaa60(1-199)/CoA, the terminal thiol of CoA adopts alternative conformations. One is to approach the substrate amine (as indicated by the superimposed hNaa50/CoA/peptide structure), similar to the terminal ethanethioate of Ac-CoA in the structure of hNaa60(1-242)/Ac-CoA; the other is to approach the α1-α2 loop and away from the substrate amine (Fig. 3B). To rule out the possibility that the electron density we define as the alternative conformation of the thiol terminus is residual electron density of the displaced side-chain of Phe 34, we solved the crystal structure of hNaa60(1-199) F34A/CoA. The structure of this mutant is highly similar to hNaa60(1-199)/CoA and there is essentially the same electron density corresponding to the alternative conformation of the thiol (Fig. 3C). 0.9986228 evidence cleaner0 2023-09-20T10:35:15Z DUMMY: electron density 0.99366796 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 complex_assembly GO: cleaner0 2023-09-20T10:21:35Z hNaa60(1-242)/Ac-CoA 0.99336183 evidence cleaner0 2023-09-20T10:35:27Z DUMMY: structure complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA 0.9961402 evidence cleaner0 2023-09-20T10:35:25Z DUMMY: structure 0.9921007 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9992324 chemical cleaner0 2023-09-20T10:40:48Z CHEBI: malonate 0.9924878 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.99913627 chemical cleaner0 2023-09-20T10:40:53Z CHEBI: ethanethioate 0.9987211 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.90510833 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.99532664 evidence cleaner0 2023-09-20T10:35:29Z DUMMY: structure 0.99804014 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: Superposition 0.99360776 evidence cleaner0 2023-09-20T10:35:23Z DUMMY: structure 0.9954337 complex_assembly cleaner0 2023-09-20T10:36:25Z GO: hNaa50p/CoA/peptide 0.99910945 chemical cleaner0 2023-09-20T10:40:48Z CHEBI: malonate 0.9969879 residue_name cleaner0 2023-09-20T10:40:25Z SO: methionine chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.99384165 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9994134 protein cleaner0 2023-09-20T09:46:45Z PR: hNaa60 0.9929946 residue_name_number cleaner0 2023-09-20T10:35:06Z DUMMY: Phe 27 0.9994166 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.99719894 evidence cleaner0 2023-09-20T10:35:38Z DUMMY: structure complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA 0.9990219 chemical cleaner0 2023-09-20T09:47:15Z CHEBI: CoA 0.52795213 chemical cleaner0 2023-09-20T12:23:22Z CHEBI: amine 0.9921836 experimental_method cleaner0 2023-09-20T10:39:16Z MESH: superimposed 0.9987024 complex_assembly cleaner0 2023-09-20T10:38:27Z GO: hNaa50/CoA/peptide 0.984336 evidence cleaner0 2023-09-20T10:35:31Z DUMMY: structure 0.9991757 chemical cleaner0 2023-09-20T10:40:53Z CHEBI: ethanethioate 0.9990859 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.99643755 evidence cleaner0 2023-09-20T10:35:35Z DUMMY: structure complex_assembly GO: cleaner0 2023-09-20T10:21:35Z hNaa60(1-242)/Ac-CoA 0.9990897 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.9987115 evidence cleaner0 2023-09-20T10:35:15Z DUMMY: electron density 0.99693334 evidence cleaner0 2023-09-20T10:35:15Z DUMMY: electron density 0.99336606 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9901281 experimental_method cleaner0 2023-09-20T12:36:32Z MESH: solved 0.9979323 evidence cleaner0 2023-09-20T10:33:46Z DUMMY: crystal structure complex_assembly GO: cleaner0 2023-09-20T10:38:45Z hNaa60(1-199) F34A/CoA 0.9976439 evidence cleaner0 2023-09-20T10:35:33Z DUMMY: structure 0.9936772 protein_state cleaner0 2023-09-20T10:43:01Z DUMMY: mutant complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA 0.99862635 evidence cleaner0 2023-09-20T10:35:15Z DUMMY: electron density RESULTS paragraph 17026 Phe 27 in hNaa50p (equivalent to Phe 34 in hNaa60) has been implicated to facilitate the binding of N-terminal methionine of the substrate peptide through hydrophobic interaction. However, in the hNaa60/Ac-CoA structure, a hydrophilic malonate molecule is found at the same location where the N-terminal methionine should bind as is indicated by the superposition (Fig. 3A), suggesting that Phe 34 may accommodate binding of hydrophilic substrate, too. Moreover, orientation of Phe 34 side-chain seems to be co-related to positioning of the terminus of the co-enzyme and important for placing it at a location in close proximity to the substrate amine. We hypothesize that if Phe 34 only works to facilitate the binding of the hydrophobic N-terminal Met residue, to mutate it from Phe to Ala would not abolish the catalytic activity of this enzyme, while if Phe 34 also plays an essential role to position the ethanethioate moiety of Ac-CoA, the mutation would be expected to abrogate the activity of the enzyme. Indeed, our enzyme kinetic data showed that hNaa60(1-199) F34A mutant showed no detectable activity (Fig. 5A). In order to rule out the possibility that the observed loss of activity may be related to bad folding of the mutant protein, we studied the circular dichroism (CD) spectrum of the protein (Fig. 5B) and determined its crystal structure (Fig. 3C). Both studies proved that the F34A mutant protein is well-folded. Many studies have addressed the crucial effect of α1-α2 loop on catalysis, showing that some residues located in this area are involved in the binding of substrates. We propose that Phe 34 may play a dual role both in interacting with the peptide substrate (recognition) and in positioning of the ethanethioate moiety of Ac-CoA to the right location to facilitate acetyl-transfer. 0.99686694 residue_name_number cleaner0 2023-09-20T10:35:05Z DUMMY: Phe 27 0.9991411 protein cleaner0 2023-09-20T12:20:49Z PR: hNaa50p 0.9948791 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9993376 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.997621 residue_name cleaner0 2023-09-20T12:24:49Z SO: methionine chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.996629 bond_interaction cleaner0 2023-09-20T10:27:29Z MESH: hydrophobic interaction 0.9990492 complex_assembly cleaner0 2023-09-20T10:41:12Z GO: hNaa60/Ac-CoA 0.99804497 evidence cleaner0 2023-09-20T12:25:40Z DUMMY: structure 0.9988341 chemical cleaner0 2023-09-20T10:40:48Z CHEBI: malonate 0.9970541 residue_name cleaner0 2023-09-20T12:24:54Z SO: methionine 0.9985031 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: superposition 0.9941642 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9908397 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.99226713 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9970092 residue_name cleaner0 2023-09-20T10:41:23Z SO: Met 0.9900765 experimental_method cleaner0 2023-09-20T12:36:35Z MESH: mutate 0.99656135 residue_name cleaner0 2023-09-20T10:41:19Z SO: Phe 0.9962882 residue_name cleaner0 2023-09-20T10:41:21Z SO: Ala 0.9943061 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.99901795 chemical cleaner0 2023-09-20T10:40:53Z CHEBI: ethanethioate 0.99916965 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.9942807 experimental_method cleaner0 2023-09-20T10:21:07Z MESH: mutation 0.99212605 evidence cleaner0 2023-09-20T12:25:44Z DUMMY: enzyme kinetic data 0.77918214 mutant cleaner0 2023-09-20T10:42:51Z MESH: hNaa60(1-199) 0.99832374 mutant cleaner0 2023-09-20T10:42:55Z MESH: F34A 0.9989729 protein_state cleaner0 2023-09-20T10:43:01Z DUMMY: mutant 0.9986871 protein_state cleaner0 2023-09-20T10:43:01Z DUMMY: mutant 0.8455858 experimental_method cleaner0 2023-09-20T10:42:29Z MESH: circular dichroism 0.57051194 experimental_method cleaner0 2023-09-20T10:42:24Z MESH: CD 0.9649881 evidence cleaner0 2023-09-20T10:42:34Z DUMMY: spectrum 0.99833393 evidence cleaner0 2023-09-20T10:33:46Z DUMMY: crystal structure 0.9987686 mutant cleaner0 2023-09-20T10:42:56Z MESH: F34A 0.9987796 protein_state cleaner0 2023-09-20T10:43:01Z DUMMY: mutant protein_state DUMMY: cleaner0 2023-09-20T10:42:06Z well-folded 0.99931383 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.9952917 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.9990681 chemical cleaner0 2023-09-20T10:40:53Z CHEBI: ethanethioate 0.99910814 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA chemical CHEBI: cleaner0 2023-09-20T11:19:06Z acetyl RESULTS title_2 18850 Structural basis for hNaa60 substrate binding 0.99913543 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 RESULTS paragraph 18896 Several studies have demonstrated that the substrate specificities of hNaa60 and hNaa50 are highly overlapped. The structure of hNaa50p/CoA/peptide provides detailed information about the position of substrate N-terminal residues in the active site of hNaa50. Comparing the active site of hNaa60(1-242)/Ac-CoA with hNaa50p/CoA/peptide revealed that key catalytic and substrate binding residues are highly conserved in both proteins (Fig. 4A). With respect to catalysis, hNaa50p has been shown to employ residues Tyr 73 and His 112 to abstract proton from the α-amino group from the substrate’s first residue through a well-ordered water. A well-ordered water was also found between Tyr 97 and His 138 in hNaa60 (1-199)/CoA and hNaa60 (1-242)/Ac-CoA (Fig. 4B). To determine the function of Tyr 97 and His 138 in hNaa60 catalysis, we mutated these residues to alanine and phenylalanine, respectively, and confirmed that all these mutants used in our kinetic assays are well-folded by CD spectra (Fig. 5B). Purity of all proteins were also analyzed by SDS-PAGE (Figure S5). As show in Fig. 5A, the mutants Y97A, Y97F, H138A and H138F abolished the activity of hNaa60. In contrast, to mutate the nearby solvent exposed residue Glu 37 to Ala (E37A) has little impact on the activity of hNaa60 (Figs 4B and 5A). In conclusion, the structural and functional studies indicate that hNaa60 applies the same two base mechanism through Tyr 97, His 138 and a well-ordered water as was described for hNaa50. 0.99936503 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9993616 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.99719715 evidence cleaner0 2023-09-20T12:25:47Z DUMMY: structure 0.99887764 complex_assembly cleaner0 2023-09-20T10:46:51Z GO: hNaa50p/CoA/peptide 0.9990568 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.9993986 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.9990715 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.8956674 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.99830693 complex_assembly cleaner0 2023-09-20T10:47:13Z GO: hNaa50p/CoA/peptide 0.99739283 site cleaner0 2023-09-20T10:47:15Z SO: catalytic and substrate binding residues 0.9988841 protein_state cleaner0 2023-09-20T10:47:18Z DUMMY: highly conserved 0.9993026 protein cleaner0 2023-09-20T12:20:49Z PR: hNaa50p 0.9956695 residue_name_number cleaner0 2023-09-20T10:47:22Z DUMMY: Tyr 73 0.99675614 residue_name_number cleaner0 2023-09-20T10:47:26Z DUMMY: His 112 protein_state DUMMY: cleaner0 2023-09-20T10:47:41Z well-ordered 0.9988475 chemical cleaner0 2023-09-20T10:47:55Z CHEBI: water protein_state DUMMY: cleaner0 2023-09-20T10:47:41Z well-ordered 0.99888307 chemical cleaner0 2023-09-20T10:47:54Z CHEBI: water 0.992056 residue_name_number cleaner0 2023-09-20T09:47:56Z DUMMY: Tyr 97 0.9913372 residue_name_number cleaner0 2023-09-20T09:48:00Z DUMMY: His 138 0.85434854 complex_assembly cleaner0 2023-09-20T10:48:15Z GO: hNaa60 (1-199)/CoA 0.8238333 complex_assembly cleaner0 2023-09-20T10:48:18Z GO: hNaa60 (1-242)/Ac-CoA 0.99251354 residue_name_number cleaner0 2023-09-20T09:47:56Z DUMMY: Tyr 97 0.9943993 residue_name_number cleaner0 2023-09-20T09:48:00Z DUMMY: His 138 0.9993262 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9884547 experimental_method cleaner0 2023-09-20T12:36:39Z MESH: mutated 0.9938066 residue_name cleaner0 2023-09-20T10:48:20Z SO: alanine 0.99388474 residue_name cleaner0 2023-09-20T10:48:23Z SO: phenylalanine 0.90800405 protein_state cleaner0 2023-09-20T10:56:38Z DUMMY: mutants 0.9392303 experimental_method cleaner0 2023-09-20T10:49:15Z MESH: kinetic assays protein_state DUMMY: cleaner0 2023-09-20T10:42:06Z well-folded 0.7562226 experimental_method cleaner0 2023-09-20T10:42:24Z MESH: CD 0.95278716 evidence cleaner0 2023-09-20T10:49:01Z DUMMY: spectra 0.9985738 experimental_method cleaner0 2023-09-20T10:49:04Z MESH: SDS-PAGE 0.99622065 protein_state cleaner0 2023-09-20T10:56:38Z DUMMY: mutants 0.998755 mutant cleaner0 2023-09-20T10:48:44Z MESH: Y97A 0.9989926 mutant cleaner0 2023-09-20T10:48:48Z MESH: Y97F 0.99900275 mutant cleaner0 2023-09-20T10:48:52Z MESH: H138A 0.9989298 mutant cleaner0 2023-09-20T10:48:57Z MESH: H138F protein_state DUMMY: cleaner0 2023-09-20T12:37:26Z abolished the activity 0.9993457 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9932173 experimental_method cleaner0 2023-09-20T12:36:43Z MESH: mutate protein_state DUMMY: cleaner0 2023-09-20T12:36:57Z solvent exposed 0.9960622 residue_name_number cleaner0 2023-09-20T10:48:36Z DUMMY: Glu 37 0.9937356 residue_name cleaner0 2023-09-20T10:48:29Z SO: Ala 0.9976242 mutant cleaner0 2023-09-20T12:34:27Z MESH: E37A 0.9993649 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9985845 experimental_method cleaner0 2023-09-20T10:49:11Z MESH: structural and functional studies 0.9993759 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9882264 residue_name_number cleaner0 2023-09-20T09:47:56Z DUMMY: Tyr 97 0.9918355 residue_name_number cleaner0 2023-09-20T09:48:00Z DUMMY: His 138 protein_state DUMMY: cleaner0 2023-09-20T10:47:41Z well-ordered 0.998632 chemical cleaner0 2023-09-20T10:47:55Z CHEBI: water 0.99939847 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 RESULTS paragraph 20394 The malonate molecule observed in the hNaa60(1-242)/Ac-CoA crystal structure may be indicative of the substrate binding position of hNaa60 since it is located in the active site and overlaps the N-terminal Met of the substrate peptide in the superposition with the hNaa50p/CoA/peptide structure (Fig. 4A). Residues Tyr 38, Asn 143 and Tyr 165 are located around the malonate and interact with it through direct hydrogen bonds or water bridge (Fig. 4C). Although malonate is negatively charged, which is different from that of lysine ε-amine or peptide N-terminal amine, similar hydrophilic interactions may take place when substrate amine presents in the same position, since Tyr 38, Asn 143 and Tyr 165 are not positively or negatively charged. In agreement with this hypothesis, it was found that the Y38A, N143A and Y165A mutants all showed remarkably reduced activities as compared to WT, implying that these residues may be critical for substrate binding (Figs 4C and 5A). 0.99926704 chemical cleaner0 2023-09-20T10:40:48Z CHEBI: malonate 0.99800014 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.9984876 evidence cleaner0 2023-09-20T10:33:46Z DUMMY: crystal structure 0.9993979 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9989399 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.9947962 residue_name cleaner0 2023-09-20T10:50:26Z SO: Met chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.9987845 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: superposition 0.999078 complex_assembly cleaner0 2023-09-20T10:49:41Z GO: hNaa50p/CoA/peptide 0.9886729 evidence cleaner0 2023-09-20T10:50:30Z DUMMY: structure 0.9944216 residue_name_number cleaner0 2023-09-20T10:50:13Z DUMMY: Tyr 38 0.99544126 residue_name_number cleaner0 2023-09-20T10:50:17Z DUMMY: Asn 143 0.99556684 residue_name_number cleaner0 2023-09-20T10:50:21Z DUMMY: Tyr 165 0.9989592 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.99632376 bond_interaction cleaner0 2023-09-20T10:49:54Z MESH: hydrogen bonds 0.9881353 bond_interaction cleaner0 2023-09-20T10:49:50Z MESH: water bridge 0.9986852 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.9957231 residue_name cleaner0 2023-09-20T10:50:06Z SO: lysine chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.9969008 bond_interaction cleaner0 2023-09-20T10:49:57Z MESH: hydrophilic interactions 0.99480635 residue_name_number cleaner0 2023-09-20T10:50:14Z DUMMY: Tyr 38 0.9955844 residue_name_number cleaner0 2023-09-20T10:50:18Z DUMMY: Asn 143 0.9956566 residue_name_number cleaner0 2023-09-20T10:50:22Z DUMMY: Tyr 165 0.99890196 mutant cleaner0 2023-09-20T12:34:31Z MESH: Y38A 0.99893147 mutant cleaner0 2023-09-20T12:34:34Z MESH: N143A 0.99892247 mutant cleaner0 2023-09-20T12:34:36Z MESH: Y165A 0.9975339 protein_state cleaner0 2023-09-20T10:56:38Z DUMMY: mutants 0.99915206 protein_state cleaner0 2023-09-20T10:50:02Z DUMMY: WT RESULTS title_2 21378 The β3-β4 loop participates in the regulation of hNaa60-activity 0.9993284 structure_element cleaner0 2023-09-20T10:50:36Z SO: β3-β4 loop 0.9993001 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 RESULTS paragraph 21449 Residues between β3 and β4 of hNaa60 form a unique 20-residue long loop (residues 73–92) that is a short turn in many other NAT members (Fig. 1D). Previous study indicated that auto-acetylation of hNaa60K79 could influence the activity of hNaa60; however, we were not able to determine if Lys 79 is acetylated in our crystal structures due to poor quality of the electron density of Lys 79 side-chain. We therefore used mass spectrometry to analyze if Lys 79 was acetylated in our bacterially purified proteins, and observed no modification on this residue (Figure S6). To assess the impact of hNaa60K79 auto-acetylation, we studied the kinetics of K79R and K79Q mutants which mimic the un-acetylated and acetylated form of Lys 79, respectively. Interestingly, both K79R and K79Q mutants led to an increase in the catalytic activity of hNaa60, while K79A mutant led to modest decrease of the activity (Fig. 5A). These data indicate that the acetylation of Lys 79 is not required for optimal catalytic activity of hNaa60 in vitro. 0.99939644 structure_element cleaner0 2023-09-20T11:00:24Z SO: β3 0.9992778 structure_element cleaner0 2023-09-20T11:00:26Z SO: β4 0.99935776 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 structure_element SO: cleaner0 2023-09-20T11:00:43Z 20-residue long loop 0.99748373 residue_range cleaner0 2023-09-20T11:00:46Z DUMMY: 73–92 0.9959029 structure_element cleaner0 2023-09-20T12:30:32Z SO: short turn protein_type MESH: cleaner0 2023-09-20T09:45:28Z NAT 0.97910434 ptm cleaner0 2023-09-20T10:55:34Z MESH: auto-acetylation protein PR: cleaner0 2023-09-20T10:55:49Z hNaa60 residue_name_number DUMMY: cleaner0 2023-09-20T10:56:02Z K79 0.9993579 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.99005854 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9959693 protein_state cleaner0 2023-09-20T10:56:46Z DUMMY: acetylated 0.9988948 evidence cleaner0 2023-09-20T09:46:33Z DUMMY: crystal structures 0.9986427 evidence cleaner0 2023-09-20T10:35:15Z DUMMY: electron density 0.9889725 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9986272 experimental_method cleaner0 2023-09-20T10:32:58Z MESH: mass spectrometry 0.98724186 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9929476 protein_state cleaner0 2023-09-20T10:56:46Z DUMMY: acetylated protein PR: cleaner0 2023-09-20T10:57:12Z hNaa60 residue_name_number DUMMY: cleaner0 2023-09-20T10:57:25Z K79 0.9744764 ptm cleaner0 2023-09-20T10:56:14Z MESH: auto-acetylation 0.9990439 mutant cleaner0 2023-09-20T10:56:20Z MESH: K79R 0.99908864 mutant cleaner0 2023-09-20T10:56:25Z MESH: K79Q 0.98770905 protein_state cleaner0 2023-09-20T10:56:37Z DUMMY: mutants 0.99886703 protein_state cleaner0 2023-09-20T10:56:42Z DUMMY: un-acetylated 0.9990865 protein_state cleaner0 2023-09-20T10:56:46Z DUMMY: acetylated 0.983596 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.99891984 mutant cleaner0 2023-09-20T10:56:21Z MESH: K79R 0.99896896 mutant cleaner0 2023-09-20T10:56:25Z MESH: K79Q 0.6879954 protein_state cleaner0 2023-09-20T10:56:38Z DUMMY: mutants 0.9993623 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9991049 mutant cleaner0 2023-09-20T10:56:30Z MESH: K79A 0.96566397 protein_state cleaner0 2023-09-20T10:43:01Z DUMMY: mutant 0.99336725 ptm cleaner0 2023-09-20T09:48:11Z MESH: acetylation 0.9828423 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9993723 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 RESULTS paragraph 22485 It is noted that the β3-β4 loop of hNaa60 acts like a door leaf to partly cover the substrate-binding pathway. We hence hypothesize that the β3-β4 loop may interfere with the access of the peptide substrates and that the solvent-exposing Lys 79 may play a potential role to remove the door leaf when it hovers in solvent (Fig. 4D). Acidic residues Glu 80, Asp 81 and Asp 83 interact with His 138, His 159 and His 158 to maintain the conformation of the β3-β4 loop, thus contribute to control the substrate binding (Fig. 4D). To verify this hypothesis, we mutated Glu 80, Asp 81 and Asp 83 to Ala respectively. In line with our hypothesis, E80A, D81A and D83A mutants exhibit at least 2-fold increase in hNaa60-activity (Fig. 5A). Interestingly, the structure of an ancestral NAT from S. solfataricus also exhibits a 10-residue long extension between β3 and β4, and the structure and biochemical studies showed that the extension of SsNat has the ability to stabilize structure of the active site and potentiate SsNat-activity. 0.999129 structure_element cleaner0 2023-09-20T10:50:37Z SO: β3-β4 loop 0.9993956 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.8664518 site cleaner0 2023-09-20T12:39:26Z SO: substrate-binding pathway 0.99904037 structure_element cleaner0 2023-09-20T10:50:37Z SO: β3-β4 loop chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide protein_state DUMMY: cleaner0 2023-09-20T12:37:45Z solvent-exposing 0.995547 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9951457 residue_name_number cleaner0 2023-09-20T11:01:34Z DUMMY: Glu 80 0.99640024 residue_name_number cleaner0 2023-09-20T11:01:38Z DUMMY: Asp 81 0.9962824 residue_name_number cleaner0 2023-09-20T11:01:43Z DUMMY: Asp 83 0.9954164 residue_name_number cleaner0 2023-09-20T09:48:00Z DUMMY: His 138 0.99452215 residue_name_number cleaner0 2023-09-20T11:01:58Z DUMMY: His 159 0.9952251 residue_name_number cleaner0 2023-09-20T11:01:53Z DUMMY: His 158 0.99881583 structure_element cleaner0 2023-09-20T10:50:37Z SO: β3-β4 loop 0.96276665 experimental_method cleaner0 2023-09-20T12:37:32Z MESH: mutated 0.99578 residue_name_number cleaner0 2023-09-20T11:01:35Z DUMMY: Glu 80 0.996125 residue_name_number cleaner0 2023-09-20T11:01:39Z DUMMY: Asp 81 0.9965105 residue_name_number cleaner0 2023-09-20T11:01:43Z DUMMY: Asp 83 0.99566793 residue_name cleaner0 2023-09-20T11:02:04Z SO: Ala 0.99891067 mutant cleaner0 2023-09-20T11:02:14Z MESH: E80A 0.9990312 mutant cleaner0 2023-09-20T11:02:18Z MESH: D81A 0.9990434 mutant cleaner0 2023-09-20T11:02:22Z MESH: D83A 0.9980446 protein_state cleaner0 2023-09-20T10:56:38Z DUMMY: mutants 0.99934214 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.998055 evidence cleaner0 2023-09-20T11:02:09Z DUMMY: structure 0.99928576 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.99852866 species cleaner0 2023-09-20T11:02:34Z MESH: S. solfataricus structure_element SO: cleaner0 2023-09-20T11:04:25Z 10-residue long extension 0.99925405 structure_element cleaner0 2023-09-20T12:30:36Z SO: β3 0.9989618 structure_element cleaner0 2023-09-20T12:30:39Z SO: β4 0.9890509 experimental_method cleaner0 2023-09-20T11:04:33Z MESH: structure and biochemical studies 0.9962972 structure_element cleaner0 2023-09-20T12:30:46Z SO: extension 0.9946806 protein cleaner0 2023-09-20T11:03:56Z PR: SsNat 0.998391 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.9979418 protein cleaner0 2023-09-20T11:03:56Z PR: SsNat DISCUSS title_1 23536 Discussion DISCUSS paragraph 23547 Nt-acetylation, which is carried out by the NAT family acetyltransferases, is an ancient and essential modification of proteins. Although many NATs are highly conserved from lower to higher eukaryotes and the substrate bias of them appears to be partially overlapped, there is a significant increase in the overall level of N-terminal acetylation from lower to higher eukaryotes. In this study we provide structural insights into Naa60 found only in multicellular eukaryotes. 0.9665944 ptm cleaner0 2023-09-20T09:45:10Z MESH: Nt-acetylation 0.9985712 protein_type cleaner0 2023-09-20T11:06:21Z MESH: NAT family acetyltransferases 0.99907494 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.9988533 protein_state cleaner0 2023-09-20T11:06:12Z DUMMY: highly conserved 0.99409544 taxonomy_domain cleaner0 2023-09-20T11:06:06Z DUMMY: lower 0.94689333 taxonomy_domain cleaner0 2023-09-20T10:06:06Z DUMMY: higher eukaryotes ptm MESH: cleaner0 2023-09-20T09:45:03Z N-terminal acetylation 0.9925706 taxonomy_domain cleaner0 2023-09-20T11:06:04Z DUMMY: lower 0.97923696 taxonomy_domain cleaner0 2023-09-20T10:06:06Z DUMMY: higher eukaryotes 0.99926347 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.9782407 taxonomy_domain cleaner0 2023-09-20T09:45:39Z DUMMY: multicellular eukaryotes DISCUSS paragraph 24023 The N-terminus of hNaa60 harbors three hydrophobic residues (VVP) that makes it very difficult to express and purify the protein. This problem was solved by replacing residues 4–6 from VVP to EER that are found in Naa60 from Xenopus Laevis. Since Naa60 from human and from Xenopus Laevis are highly homologous (Fig. 1A), we speculate that these two proteins should have the same biological function. Therefore it is deduced that the VVP to EER replacement on the N-terminus of hNaa60 may not interfere with its function. However, in the hNaa60(1-242) structure the N-terminus adopts an α-helical structure which will probably be kinked if residue 6 is proline (Fig. 1C), and in the hNaa60(1-199) structure the N-terminus adopts a different semi-helical structure (Fig. 1B) likely due to different crystal packing. Hence it is not clear if the N-terminal end of wild-type hNaa60 is an α-helix, and what roles the hydrophobic residues 4–6 play in structure and function of wild-type hNaa60. In addition to the three-residue mutation (VVP to EER), we also tried many other hNaa60 constructs, but only the full-length protein and the truncated variant 1-199 behaved well. The finding that the catalytic activity of hNaa60(1-242) is much lower than that of hNaa60(1-199) is intriguing. We speculate that low activity of the full-length hNaa60 might be related to lack of Golgi localization of the enzyme in our in vitro studies or there remains some undiscovered auto-inhibitory regulation in the full-length protein. 0.9993436 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.32769075 structure_element cleaner0 2023-09-20T10:19:39Z SO: VVP 0.99827373 experimental_method cleaner0 2023-09-20T12:38:03Z MESH: replacing 0.99464613 residue_range cleaner0 2023-09-20T12:33:13Z DUMMY: 4–6 0.39737746 structure_element cleaner0 2023-09-20T10:19:39Z SO: VVP 0.3354909 structure_element cleaner0 2023-09-20T10:19:33Z SO: EER 0.9994191 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.99843544 species cleaner0 2023-09-20T10:20:03Z MESH: Xenopus Laevis 0.9994129 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.9987526 species cleaner0 2023-09-20T09:44:22Z MESH: human 0.9984007 species cleaner0 2023-09-20T10:20:03Z MESH: Xenopus Laevis 0.655985 protein_state cleaner0 2023-09-20T12:28:01Z DUMMY: highly homologous 0.6868272 mutant cleaner0 2023-09-20T11:05:36Z MESH: VVP to EER 0.99554366 experimental_method cleaner0 2023-09-20T11:05:39Z MESH: replacement 0.9993748 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 protein PR: cleaner0 2023-09-20T09:46:46Z hNaa60 residue_range DUMMY: cleaner0 2023-09-20T10:24:08Z 1-242 0.9979784 evidence cleaner0 2023-09-20T11:07:26Z DUMMY: structure 0.9973535 structure_element cleaner0 2023-09-20T12:30:51Z SO: α-helical structure 0.9877457 residue_number cleaner0 2023-09-20T11:07:41Z DUMMY: 6 0.9979997 residue_name cleaner0 2023-09-20T11:07:43Z SO: proline 0.95973444 mutant cleaner0 2023-09-20T11:07:24Z MESH: hNaa60(1-199) 0.9979778 evidence cleaner0 2023-09-20T11:07:28Z DUMMY: structure 0.9946813 structure_element cleaner0 2023-09-20T12:30:54Z SO: semi-helical structure evidence DUMMY: cleaner0 2023-09-20T10:44:17Z crystal packing 0.9991526 protein_state cleaner0 2023-09-20T11:07:32Z DUMMY: wild-type 0.9993598 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.9992042 structure_element cleaner0 2023-09-20T12:30:57Z SO: α-helix 0.9663139 residue_range cleaner0 2023-09-20T11:08:34Z DUMMY: 4–6 0.9991584 protein_state cleaner0 2023-09-20T11:07:32Z DUMMY: wild-type 0.9993875 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.5227871 experimental_method cleaner0 2023-09-20T10:21:07Z MESH: mutation 0.4418587 structure_element cleaner0 2023-09-20T10:19:39Z SO: VVP 0.51431394 structure_element cleaner0 2023-09-20T10:19:33Z SO: EER 0.99928135 protein cleaner0 2023-09-20T09:46:46Z PR: hNaa60 0.99907476 protein_state cleaner0 2023-09-20T10:20:19Z DUMMY: full-length 0.986394 protein_state cleaner0 2023-09-20T10:20:13Z DUMMY: truncated 0.9944792 residue_range cleaner0 2023-09-20T11:08:13Z DUMMY: 1-199 0.959848 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9730511 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 mutant MESH: cleaner0 2023-09-20T12:34:58Z hNaa60(1-199) 0.9990978 protein_state cleaner0 2023-09-20T10:20:19Z DUMMY: full-length 0.99933344 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9991409 protein_state cleaner0 2023-09-20T10:20:19Z DUMMY: full-length DISCUSS paragraph 25544 The hNaa60 protein was proven to be localized on Golgi apparatus. Aksnes and colleagues predicted putative transmembrane domains and two putative sites of S-palmitoylation, by bioinformatics means, to account for Golgi localization of the protein. They then mutated all five cysteine residues of hNaa60’s to serine, including the two putative S-palmitoylation sites. However, these mutations did not abolish Naa60 membrane localization, indicating that S-palmitoylation is unlikely to (solely) account for targeting hNaa60 on Golgi. Furthermore, adding residues 217–242 of hNaa60 (containing residues 217–236, one of the putative transmembrane domains) to the C terminus of eGFP were not sufficient to localize the protein on Golgi apparatus, while eGFP-hNaa60182-242 was sufficient to, suggesting that residues 182–216 are important for Golgi localization of hNaa60. We found that residues 190–202 formed an amphipathic helix with an array of hydrophobic residues located on one side. This observation is reminiscent of the protein/membrane interaction through amphipathic helices in the cases of KalSec14, Atg3, PB1-F2 etc. In this model an amphipathic helix can immerse its hydrophobic side into the lipid bilayer through hydrophobic interactions. Therefore we propose that the amphipathic helix α5 may contribute to Golgi localization of hNaa60. This model, though may need further studies, is supported by the Aksnes studies. 0.9991893 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.99866015 structure_element cleaner0 2023-09-20T11:10:17Z SO: transmembrane domains 0.97566384 ptm cleaner0 2023-09-20T11:10:23Z MESH: S-palmitoylation 0.99236155 experimental_method cleaner0 2023-09-20T12:38:26Z MESH: mutated 0.9971693 residue_name cleaner0 2023-09-20T11:08:41Z SO: cysteine 0.9992047 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9971943 residue_name cleaner0 2023-09-20T11:08:44Z SO: serine 0.99831057 site cleaner0 2023-09-20T11:10:32Z SO: S-palmitoylation sites 0.97516257 experimental_method cleaner0 2023-09-20T12:38:30Z MESH: mutations 0.99930024 protein cleaner0 2023-09-20T09:44:47Z PR: Naa60 0.9770059 ptm cleaner0 2023-09-20T11:10:24Z MESH: S-palmitoylation 0.99929214 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9947547 experimental_method cleaner0 2023-09-20T12:38:43Z MESH: adding 0.9976034 residue_range cleaner0 2023-09-20T11:08:48Z DUMMY: 217–242 0.9992981 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9976539 residue_range cleaner0 2023-09-20T11:10:37Z DUMMY: 217–236 0.997695 structure_element cleaner0 2023-09-20T11:09:05Z SO: transmembrane domains 0.92742413 experimental_method cleaner0 2023-09-20T11:09:25Z MESH: eGFP 0.7607362 experimental_method cleaner0 2023-09-20T12:23:13Z MESH: eGFP 0.8553622 mutant cleaner0 2023-09-20T12:35:19Z MESH: hNaa60182-242 0.9976466 residue_range cleaner0 2023-09-20T11:10:41Z DUMMY: 182–216 0.9992848 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.99767846 residue_range cleaner0 2023-09-20T11:10:39Z DUMMY: 190–202 0.97816676 structure_element cleaner0 2023-09-20T10:27:48Z SO: amphipathic helix structure_element SO: cleaner0 2023-09-20T11:11:02Z amphipathic helices 0.9991417 protein cleaner0 2023-09-20T10:28:53Z PR: KalSec14 0.9991431 protein cleaner0 2023-09-20T10:28:59Z PR: Atg3 0.999237 protein cleaner0 2023-09-20T10:29:04Z PR: PB1-F2 structure_element SO: cleaner0 2023-09-20T10:27:48Z amphipathic helix 0.99526036 bond_interaction cleaner0 2023-09-20T10:26:57Z MESH: hydrophobic interactions structure_element SO: cleaner0 2023-09-20T10:27:48Z amphipathic helix 0.99937785 structure_element cleaner0 2023-09-20T12:31:07Z SO: α5 0.99927133 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 DISCUSS paragraph 26986 Previous studies indicated that members of NAT family are bi-functional NAT and KAT enzymes. However, known structures of NATs do not well support this hypothesis, since the β6-β7 hairpin/loop of most of NATs is involved in the formation of a tunnel-like substrate-binding site with the α1-α2 loop, which would be good for the NAT but not KAT activity of the enzyme. Kinetic studies have been conducted to compare the NAT and KAT activity of hNaa50 in vitro, and indicate that the NAT activity of Naa50 is much higher than KAT activity. However, the substrate used in this study for assessing KAT activity was a small peptide which could not really mimic the 3D structure of a folded protein substrate in vivo. Our mass spectrometry data indicated that there were robust acetylation of histone H3-H4 tetramer lysines and both N-terminal acetylation and lysine acetylation of the peptide used in the activity assay, thus confirmed the KAT activity of this enzyme in vitro. Conformational change of the β7-β8 hairpin (corresponding to the β6-β7 loop of other NATs) is noted in our structures (Figs 1D and 2C), which might provide an explanation to the NAT/KAT dual-activity in a structural biological view, but we were unable to rule out the possibility that the observed conformational change of this hairpin might be an artifact related to crystal packing or truncation of the C-terminal end of the protein. Further studies are therefore needed to reveal the mechanism for the KAT activity of this enzyme. protein_type MESH: cleaner0 2023-09-20T09:45:28Z NAT 0.99865484 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.9953199 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.99714917 evidence cleaner0 2023-09-20T11:11:57Z DUMMY: structures 0.9986947 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.9985568 structure_element cleaner0 2023-09-20T12:31:12Z SO: β6-β7 hairpin 0.99843925 structure_element cleaner0 2023-09-20T11:12:45Z SO: loop 0.9988381 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs site SO: cleaner0 2023-09-20T12:39:50Z tunnel-like substrate-binding site 0.99911714 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.995466 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.9779108 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.9656652 experimental_method cleaner0 2023-09-20T11:12:15Z MESH: Kinetic studies 0.9873094 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.96045804 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.9993749 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.97203314 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.99943024 protein cleaner0 2023-09-20T12:21:03Z PR: Naa50 0.9692684 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.71763927 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide evidence DUMMY: cleaner0 2023-09-20T12:28:21Z 3D structure 0.9810611 protein_state cleaner0 2023-09-20T12:28:08Z DUMMY: folded 0.9983854 experimental_method cleaner0 2023-09-20T10:32:58Z MESH: mass spectrometry evidence DUMMY: cleaner0 2023-09-20T12:28:39Z data 0.99387944 ptm cleaner0 2023-09-20T09:48:11Z MESH: acetylation protein_type MESH: cleaner0 2023-09-20T10:08:43Z histone complex_assembly GO: cleaner0 2023-09-20T10:32:13Z H3-H4 0.9655266 oligomeric_state cleaner0 2023-09-20T11:12:20Z DUMMY: tetramer 0.992084 residue_name cleaner0 2023-09-20T12:24:59Z SO: lysines ptm MESH: cleaner0 2023-09-20T09:45:03Z N-terminal acetylation ptm MESH: cleaner0 2023-09-20T10:05:37Z lysine acetylation chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide 0.99767715 experimental_method cleaner0 2023-09-20T11:12:13Z MESH: activity assay 0.97320694 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.9989168 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.99842685 structure_element cleaner0 2023-09-20T11:12:50Z SO: β6-β7 loop 0.9988734 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.99845386 evidence cleaner0 2023-09-20T11:11:59Z DUMMY: structures 0.99693537 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.9884763 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.99828833 structure_element cleaner0 2023-09-20T11:12:52Z SO: hairpin evidence DUMMY: cleaner0 2023-09-20T10:44:17Z crystal packing 0.97712255 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT DISCUSS paragraph 28518 The relationship between enzyme, co-enzyme and substrates has been documented for several years. In early years, researchers found adjustment of GCN5 histone acetyltransferase structure when it binds CoA molecule. The complexed form of NatA is more suitable for catalytic activation, since the α1-α2 loop undergoes a conformation change to participate in the formation of substrate-binding site when the auxiliary subunit Naa15 interacts with Naa10 (the catalytic subunit of NatA). In the structure of hNaa50/CoA/peptide, Phe 27 in the α1-α2 loop appears to make hydrophobic interaction with the N-terminal Met of substrate peptide. However, the hNaa60(1-242)/Ac-CoA crystal structure indicated that its counterpart in hNaa60, Phe 34, could also accommodate the binding of a hydrophilic malonate that occupied the substrate binding site although it maintained the same conformation as that observed in hNaa50. Interestingly, the terminal thiol of CoA adopted alternative conformations in the structure of hNaa60(1-199)/CoA. One was to approach the substrate amine; the other was to approach the α1-α2 loop and away from the substrate amine. Same alternative conformations of CoA were observed in the hNaa60(1-199)(F34A) crystal structure, and our kinetic data showed that the F34A mutation abolished the activity of the enzyme. Taken together, our data indicated that Phe 34 in hNaa60 may play a role in placing co-enzyme at the right location to facilitate the acetyl-transfer. However, these data did not rule out that possibility that Phe 34 may coordinate the binding of the N-terminal Met through hydrophobic interaction as was proposed by previous studies. protein_type MESH: cleaner0 2023-09-20T11:14:32Z GCN5 histone acetyltransferase 0.99628496 evidence cleaner0 2023-09-20T11:14:55Z DUMMY: structure 0.9992446 chemical cleaner0 2023-09-20T09:47:15Z CHEBI: CoA 0.9990343 protein_state cleaner0 2023-09-20T12:28:52Z DUMMY: complexed 0.996225 complex_assembly cleaner0 2023-09-20T09:54:46Z GO: NatA 0.9991602 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.9989286 site cleaner0 2023-09-20T10:34:06Z SO: substrate-binding site 0.9994199 protein cleaner0 2023-09-20T12:21:12Z PR: Naa15 0.99938476 protein cleaner0 2023-09-20T12:21:17Z PR: Naa10 0.74719286 protein_state cleaner0 2023-09-20T12:28:58Z DUMMY: catalytic 0.6046873 structure_element cleaner0 2023-09-20T12:31:19Z SO: subunit 0.97488165 complex_assembly cleaner0 2023-09-20T09:54:46Z GO: NatA 0.99712 evidence cleaner0 2023-09-20T11:14:53Z DUMMY: structure 0.99884164 complex_assembly cleaner0 2023-09-20T11:15:05Z GO: hNaa50/CoA/peptide 0.9969653 residue_name_number cleaner0 2023-09-20T10:35:06Z DUMMY: Phe 27 0.9991973 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.9969026 bond_interaction cleaner0 2023-09-20T10:27:29Z MESH: hydrophobic interaction 0.9954798 residue_name cleaner0 2023-09-20T11:16:34Z SO: Met chemical CHEBI: cleaner0 2023-09-20T10:45:09Z peptide complex_assembly GO: cleaner0 2023-09-20T10:21:35Z hNaa60(1-242)/Ac-CoA 0.99837536 evidence cleaner0 2023-09-20T10:33:46Z DUMMY: crystal structure 0.9994266 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9955821 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.99918216 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.9986929 site cleaner0 2023-09-20T12:39:54Z SO: substrate binding site 0.99944645 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.6209677 chemical cleaner0 2023-09-20T12:23:27Z CHEBI: thiol 0.99915993 chemical cleaner0 2023-09-20T09:47:15Z CHEBI: CoA 0.99825984 evidence cleaner0 2023-09-20T12:25:55Z DUMMY: structure 0.9801244 complex_assembly cleaner0 2023-09-20T10:21:54Z GO: hNaa60(1-199)/CoA 0.99917614 structure_element cleaner0 2023-09-20T10:30:07Z SO: α1-α2 loop 0.9990846 chemical cleaner0 2023-09-20T09:47:15Z CHEBI: CoA mutant MESH: cleaner0 2023-09-20T11:16:09Z hNaa60(1-199)(F34A) 0.998599 evidence cleaner0 2023-09-20T10:33:46Z DUMMY: crystal structure 0.97129583 evidence cleaner0 2023-09-20T12:25:59Z DUMMY: kinetic data 0.9991026 mutant cleaner0 2023-09-20T10:42:56Z MESH: F34A experimental_method MESH: cleaner0 2023-09-20T10:21:07Z mutation 0.9954623 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.9994444 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 chemical CHEBI: cleaner0 2023-09-20T11:19:05Z acetyl 0.99600923 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.99463564 residue_name cleaner0 2023-09-20T11:16:30Z SO: Met 0.99646735 bond_interaction cleaner0 2023-09-20T10:27:29Z MESH: hydrophobic interaction DISCUSS paragraph 30205 Furthermore, we showed that hNaa60 adopts the classical two base mechanism to catalyze acetyl-transfer. Although sequence identity between hNaa60 and hNaa50 is low, key residues in the active site of both enzymes are highly conserved. This can reasonably explain the high overlapping substrates specificities between hNaa60 and hNaa50. Another structural feature of hNaa60 that distinguishes it from other NATs is the β3-β4 long loop which appears to inhibit the catalytic activity of hNaa60. However, this loop also seems to stabilize the whole hNaa60 structure, because deletion mutations of this region led to protein precipitation and aggregation (Figure S7). A previous study suggested that the auto-acetylation of Lys 79 was important for hNaa60-activity, whereas the point mutation K79R did not decrease the activity of hNaa60 in our study. Meanwhile, no electron density of acetyl group was found on Lys 79 in our structures and mass spectrometry analysis. Hence, it appears that the auto-acetylation of hNaa60 is not an essential modification for its activity for the protein we used here. As for the reason why K79R in Yang’s previous studies reduced the activity of the enzyme, but in our studies it didn’t, we suspect that the stability of this mutant may play some role. K79R is less stable than the wild-type enzyme as was judged by its poorer gel-filtration behavior and tendency to precipitate. In our studies we have paid special attention and carefully handled this protein to ensure that we did get enough of the protein in good condition for kinetic assays. The intracellular environment is more complicated than our in vitro assay and the substrate specificity of hNaa60 most focuses on transmembrane proteins. The interaction between hNaa60 and its substrates may involve the protein-membrane interaction which would further increase the complexity. It is not clear if the structure of hNaa60 is different in vivo or if other potential partner proteins may help to regulate its activity. Nevertheless, our study may be an inspiration for further studies on the functions and regulation of this youngest member of the NAT family. 0.9992888 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 chemical CHEBI: cleaner0 2023-09-20T11:19:06Z acetyl 0.9992924 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9993185 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.9990032 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.99891543 protein_state cleaner0 2023-09-20T12:29:06Z DUMMY: highly conserved 0.99930453 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9993167 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.99931 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9991873 protein_type cleaner0 2023-09-20T09:45:22Z MESH: NATs 0.99923515 structure_element cleaner0 2023-09-20T09:47:51Z SO: β3-β4 long loop 0.9992981 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9965564 structure_element cleaner0 2023-09-20T11:18:01Z SO: loop 0.99934274 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9930085 evidence cleaner0 2023-09-20T12:26:02Z DUMMY: structure 0.9984491 experimental_method cleaner0 2023-09-20T12:38:48Z MESH: deletion mutations 0.9753645 ptm cleaner0 2023-09-20T11:18:11Z MESH: auto-acetylation 0.98703116 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9992586 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.879584 experimental_method cleaner0 2023-09-20T11:17:37Z MESH: point mutation 0.99910057 mutant cleaner0 2023-09-20T10:56:21Z MESH: K79R 0.99931717 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9931169 evidence cleaner0 2023-09-20T10:35:15Z DUMMY: electron density chemical CHEBI: cleaner0 2023-09-20T11:19:06Z acetyl 0.9799822 residue_name_number cleaner0 2023-09-20T10:56:06Z DUMMY: Lys 79 0.9984842 evidence cleaner0 2023-09-20T12:26:06Z DUMMY: structures 0.9960762 experimental_method cleaner0 2023-09-20T10:32:58Z MESH: mass spectrometry 0.97629786 ptm cleaner0 2023-09-20T11:18:18Z MESH: auto-acetylation 0.9993073 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9990808 mutant cleaner0 2023-09-20T10:56:21Z MESH: K79R 0.9982279 protein_state cleaner0 2023-09-20T10:43:02Z DUMMY: mutant 0.99911886 mutant cleaner0 2023-09-20T10:56:21Z MESH: K79R 0.89987457 protein_state cleaner0 2023-09-20T11:18:27Z DUMMY: stable 0.9989593 protein_state cleaner0 2023-09-20T11:07:32Z DUMMY: wild-type experimental_method MESH: cleaner0 2023-09-20T11:17:54Z gel-filtration experimental_method MESH: cleaner0 2023-09-20T10:49:16Z kinetic assays 0.99931145 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.99931645 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 0.9949426 evidence cleaner0 2023-09-20T11:18:35Z DUMMY: structure 0.9992893 protein cleaner0 2023-09-20T09:46:47Z PR: hNaa60 protein_type MESH: cleaner0 2023-09-20T09:45:28Z NAT METHODS title_1 32362 Methods METHODS title_2 32370 Cloning, expression and purification of Homo sapiens Naa60 (hNaa60) METHODS paragraph 32438 The cDNA encoding hNaa60 residues 1–242 (full-length) or residues 1–199 were amplified by PCR and inserted into the pET23a vector, which had been modified to provide an N-terminal 6xHis-tag followed by a tobacco etch virus (TEV) protease cleavage site. The VVP to EER (residues 4–6) mutation and other mutations for functional studies were introduced using the quick change method. The protein was expressed in Escherichia coli BL21 (DE3) or Escherichia coli BL21 (DE3) pLysS at 16 °C for 15 h in the presence of 0.1 mM IPTG. Cells were harvested at 4 °C by centrifugation (4,000 g for 10 min) and resuspended in buffer A containing 20 mM Tris, pH 8.0, 500 mM NaCl, 50 mM imidazole, 10% glycerol, 1 mM protease inhibitor PMSF (Phenylmethylsulfonyl fluoride) and 1 mM Tris (2-carboxyethyl)phosphine (TCEP) hydrochloride. Cells were lysed by sonication and the lysate was cleared by centrifugation (18,000 g at 4 °C for 20 min). Then the supernatant was loaded onto a 5-mL Chelating Sepharose column (GE Healthcare) charged with Ni2+ and washed with buffer B (20 mM Tris, pH 8.0, 500 mM NaCl, 50 mM imidazole, 1% glycerol and 1 mM TCEP). The protein was eluted with buffer C (20 mM Tris, pH 8.0, 500 mM NaCl, 300 mM imidazole, 1% glycerol and 1 mM TCEP). The eluent was digested by His-tagged TEV protease and concentrated by ultrafiltration at the same time. After 3 hours, the concentrated eluent was diluted 10 times with buffer D (20 mM Tris, pH 8.0, 500 mM NaCl, 1% glycerol and 1 mM TCEP) and the diluent was passed through the nickel column once again to remove the His-tagged TEV protease and the un-cleaved His-hNaa60 protein. The flow-through was concentrated to 500 μl and loaded onto a Superose 6 or Superdex 200 10/300 gel-filtration column (GE Healthcare) equilibrated with buffer E (20 mM Tris, pH 8.0, 150 mM NaCl, 1% glycerol and 1 mM TCEP). Fractions containing the protein were collected and concentrated to a final concentration of 10 mg/ml for crystallization or acetyltransferases assays. METHODS title_2 34517 Circular Dichroism (CD) Spectroscopy METHODS paragraph 34554 CD spectra of the proteins were obtained using a Jasco J-810 circular dichroism spectropolarimeter scanning from 190 to 250 nm with a 1 mm quartz cuvette. The wild-type and mutant proteins were examined at 4.5 μM concentration in 20 mM Tris, pH 8.0, 150 mM NaCl, 1% glycerol and 1 mM TCEP at room temperature. All samples were centrifuged at 10,000 g for 5 min before analysis. METHODS title_2 34949 Crystallization, data collection and structure determination METHODS paragraph 35010 The purified hNaa60(1-242), hNaa60(1-199) or F34A(1-199) protein was mixed with acetyl coenzyme A (Ac-CoA) or coenzyme A (CoA) (Sigma), respectively, at a 1:5 molar ratio before crystallization. All crystals were made by the hanging-drop vapor diffusion method. The crystallization reservoir solution for hNaa60(1-242) was 10 mM Tris pH 8.0, 75 mM NaCl, 0.5% glycerol, 3% v/v Tacsimate pH 4.0 (Hampton Research) and 7.5% w/v polyethylene glycol 3350 (PEG 3350), and for hNaa60(1-199) was 0.2 M L-Proline, 0.1 M HEPES pH 7.5, 10% w/v PEG 3350. Crystals of F34A mutation were obtained in 0.2 M Lithium Sulfate monohydrate, 0.1 M Tris pH 8.5, 20% w/v PEG 3350. The crystals were flash-frozen in liquid nitrogen in a cryo-protectant made of the reservoir solution supplemented with 25% glycerol. METHODS paragraph 35814 The diffraction data were collected at the Shanghai SSRF BL18U1 beamline or at the Argonne National Laboratory APS ID19 beamline at 100 K. The data were processed with HKL3000. The hNaa60(1-199) structure was determined by molecular replacement with Phaser using a previously reported GNAT family acetyltransferase structure (PDB 2AE6) as the search model. The hNaa60(1-242) structure was solved by molecular replacement using hNaa60(1-199) structure as the search model. To improve the model quality, the programs ARP/wARP in CCP4 or simulated-annealing in CNS were used. Iterative cycles of manual refitting and crystallographic refinement were performed using COOT and Phenix. Ac-CoA/CoA and malonate were modeled into the closely fitting positive Fo-Fc electron density and then included in following refinement cycles. Topology and parameter files for Ac-CoA/CoA and malonate were generated using PRODRG. All figures for the molecular models were prepared using the PyMOL program. Statistics of diffraction data processing and structure refinement are shown in Table 1. METHODS title_2 36891 Acetyltransferase assay METHODS paragraph 36915 Acetyltransferase assay of hNaa60 was conducted as described previously. Briefly, a reaction cocktail containing 100 mM Tris-HCl buffer, pH 8.5, 0.07% alkylated BSA, 0.01% NP-40, 1 mM EDTA, 150 μM Ac-CoA (Sigma) was prepared and varied concentrations of the substrate peptide (0–400 μM) (NH2-MKGKEEKEGGAR-COOH) was added in a 1.5-mL microfuge tube, and then the respective enzyme was added to initiate the reaction with a final assay volume of 100 μL. The reaction was carried out for 20 minutes at 37 °C. Aliquots (40 μL) of the reaction were then removed and quenched with 40 μL of ice-cold isopropanol in individual wells of a 96-well black microplate (Corning), and then mixed with 80 μl of 25 μM 7-diethylamino-3-(49 maleimidylphenyl)-4-methylcoumarin (CPM) (Sigma) in 100 mM Tris-HCl (pH 8.5) and 1% Triton X-100 and allowed to react in darkness for 10 minutes prior to reading. The fluorescence signal was monitored using a Varioskan Flash plate reader (Thermo Scientific) at Exmax = 385 nm and Emmax = 465 nm. Substrate inhibition appeared at high concentrations of substrate peptide prevented our kinetics assays from reaching saturation of the enzyme. Therefore, we determined the value of kcat/Km by fitting our data to the equation: v = (kcat/Km)[ET][S] when the substrate concentration was far less than Km. The assays were done in triplicate. The slope of the line indicates the kcat/Km value of the enzyme (Figure S1). METHODS title_1 38401 Additional Information METHODS paragraph 38424 How to cite this article: Chen, J.-Y. et al. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase. Sci. Rep. 6, 31425; doi: 10.1038/srep31425 (2016). SUPPL title_1 38617 Supplementary Material 843 851 surname:Brownell;given-names:J. E. 8601308 REF Cell ref 84 1996 38640 Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation 491 496 surname:Dhalluin;given-names:C. 10.1038/20974 10365964 REF Nature ref 399 1999 38753 Structure and ligand of a histone acetyltransferase bromodomain 308 315 surname:Thompson;given-names:P. R. 10.1038/nsmb740 REF Nature structural & molecular biology ref 11 2004 38817 Regulation of the p300 HAT domain via a novel activation loop 973 977 surname:Hwang;given-names:C. S. surname:Shemorry;given-names:A. surname:Varshavsky;given-names:A. 10.1126/science.1183147 20110468 REF Science ref 327 2010 38879 N-terminal acetylation of cellular proteins creates specific degradation signals 138 163 surname:Shaw;given-names:K. J. surname:Rather;given-names:P. N. surname:Hare;given-names:R. S. surname:Miller;given-names:G. H. 8385262 REF Microbiological reviews ref 57 1993 38960 Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes 1358 1360 surname:Gastel;given-names:J. A. surname:Roseboom;given-names:P. H. surname:Rinaldi;given-names:P. A. surname:Weller;given-names:J. L. surname:Klein;given-names:D. C. 9478897 REF Science ref 279 1998 39081 Melatonin production: proteasomal proteolysis in serotonin N-acetyltransferase regulation 81 103 surname:Dyda;given-names:F. surname:Klein;given-names:D. C. surname:Hickman;given-names:A. B. 10.1146/annurev.biophys.29.1.81 REF Annual review of biophysics and biomolecular structure ref 29 2000 39171 GCN5-related N-acetyltransferases: a structural overview 284 295 surname:Lee;given-names:K. K. surname:Workman;given-names:J. L. 10.1038/nrm2145 17380162 REF Nature reviews. Molecular cell biology ref 8 2007 39228 Histone acetyltransferase complexes: one size doesn’t fit all 103 131 surname:Dorfel;given-names:M. J. surname:Lyon;given-names:G. J. 10.1016/j.gene.2015.04.085 25987439 REF Gene ref 567 2015 39292 The biological functions of Naa10 - From amino-terminal acetylation to human disease 269 276 surname:Kalvik;given-names:T. V. surname:Arnesen;given-names:T. 10.1038/onc.2012.82 22391571 REF Oncogene ref 32 2013 39377 Protein N-terminal acetyltransferases in cancer 1362 1374 surname:Aksnes;given-names:H. 10.1016/j.celrep.2015.01.053 25732826 REF Cell reports ref 10 2015 39425 An organellar nalpha-acetyltransferase, naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity 2385 2401 surname:Varland;given-names:S. surname:Osberg;given-names:C. surname:Arnesen;given-names:T. 10.1002/pmic.201400619 25914051 REF Proteomics ref 15 2015 39559 N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects surname:Van Damme;given-names:P. 10.1074/mcp.M110.004580 REF Molecular & cellular proteomics: MCP ref 10 2011 39681 Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase 152 161 surname:Starheim;given-names:K. K. surname:Gevaert;given-names:K. surname:Arnesen;given-names:T. 10.1016/j.tibs.2012.02.003 22405572 REF Trends in biochemical sciences ref 37 2012 39882 Protein N-terminal acetyltransferases: when the start matters 599 601 surname:Gibbs;given-names:D. J. 10.1016/j.tplants.2015.08.008 26319188 REF Trends in plant science ref 20 2015 39944 Emerging Functions for N-Terminal Protein Acetylation in Plants 31122 31129 surname:Evjenth;given-names:R. 10.1074/jbc.M109.001347 19744929 REF The Journal of biological chemistry ref 284 2009 40008 Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity 39 50 surname:Yang;given-names:X. 10.1016/j.molcel.2011.07.032 21981917 REF Molecular cell ref 44 2011 40104 HAT4, a Golgi apparatus-anchored B-type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly e1002169 surname:Van Damme;given-names:P. 10.1371/journal.pgen.1002169 21750686 REF PLoS genetics ref 7 2011 40233 NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation 2402 2409 surname:Silva;given-names:R. D. surname:Martinho;given-names:R. G. 10.1002/pmic.201400631 25920796 REF Proteomics ref 15 2015 40360 Developmental roles of protein N-terminal acetylation 13541 13555 surname:Miller;given-names:M. B. surname:Vishwanatha;given-names:K. S. surname:Mains;given-names:R. E. surname:Eipper;given-names:B. A. 10.1074/jbc.M115.636746 25861993 REF The Journal of biological chemistry ref 290 2015 40414 An N-terminal Amphipathic Helix Binds Phosphoinositides and Enhances Kalirin Sec14 Domain-mediated Membrane Interactions 415 424 surname:Nath;given-names:S. 10.1038/ncb2940 24747438 REF Nature cell biology ref 16 2014 40535 Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3 7214 7224 surname:Gibbs;given-names:J. S. surname:Malide;given-names:D. surname:Hornung;given-names:F. surname:Bennink;given-names:J. R. surname:Yewdell;given-names:J. W. 10.1128/jvi.77.13.7214-7224.2003 12805420 REF Journal of Virology ref 77 2003 40648 The Influenza A Virus PB1-F2 Protein Targets the Inner Mitochondrial Membrane via a Predicted Basic Amphipathic Helix That Disrupts Mitochondrial Function 1840 1847 surname:Drin;given-names:G. surname:Antonny;given-names:B. 10.1016/j.febslet.2009.10.022 19837069 REF FEBS letters ref 584 2010 40803 Amphipathic helices and membrane curvature 37002 37010 surname:Liszczak;given-names:G. surname:Arnesen;given-names:T. surname:Marmorstein;given-names:R. 10.1074/jbc.M111.282863 21900231 REF The Journal of biological chemistry ref 286 2011 40846 Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation 1098 1105 surname:Liszczak;given-names:G. 10.1038/nsmb.2636 REF Nature structural & molecular biology ref 20 2013 40987 Molecular basis for N-terminal acetylation by the heterodimeric NatA complex 332 341 surname:Magin;given-names:R. S. surname:Liszczak;given-names:G. P. surname:Marmorstein;given-names:R. 10.1016/j.str.2014.10.025 25619998 REF Structure ref 23 2015 41064 The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD 1217 1227 surname:Li;given-names:Y. 10.1101/gad.240531.114 24835250 REF Genes & development ref 28 2014 41152 Hat2p recognizes the histone H3 tail to specify the acetylation of the newly synthesized H3/H4 heterodimer by the Hat1p/Hat2p complex 14652 14657 surname:Liszczak;given-names:G. surname:Marmorstein;given-names:R. 10.1073/pnas.1310365110 REF P Natl Acad Sci USA ref 110 2013 41286 Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog 93 98 surname:Rojas;given-names:J. R. 10.1038/43487 10485713 REF Nature ref 401 1999 41421 Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide 859 866 surname:Minor;given-names:W. surname:Cymborowski;given-names:M. surname:Otwinowski;given-names:Z. surname:Chruszcz;given-names:M. 10.1107/S0907444906019949 16855301 REF Acta Crystallogr D Biol Crystallogr ref 62 2006 41496 HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes 658 674 surname:McCoy;given-names:A. J. 10.1107/S0021889807021206 19461840 REF Journal of applied crystallography ref 40 2007 41620 Phaser crystallographic software 229 244 surname:Morris;given-names:R. J. surname:Perrakis;given-names:A. surname:Lamzin;given-names:V. S. 10.1016/S0076-6879(03)74011-7 14696376 REF Methods in enzymology ref 374 2003 41653 ARP/wARP and automatic interpretation of protein electron density maps 905 921 surname:Brunger;given-names:A. T. 9757107 REF Acta Crystallogr D Biol Crystallogr ref 54 1998 41724 Crystallography & NMR system: A new software suite for macromolecular structure determination 2126 2132 surname:Emsley;given-names:P. surname:Cowtan;given-names:K. 15572765 REF Acta Crystallogr D Biol Crystallogr ref 60 2004 41818 Coot: model-building tools for molecular graphics 213 221 surname:Adams;given-names:P. D. 10.1107/S0907444909052925 20124702 REF Acta Crystallogr D Biol Crystallogr ref 66 2010 41868 PHENIX: a comprehensive Python-based system for macromolecular structure solution 255 262 surname:van Aalten;given-names:D. M. 8808741 REF Journal of computer-aided molecular design ref 10 1996 41950 PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules 319 328 surname:Trievel;given-names:R. C. surname:Li;given-names:F. Y. surname:Marmorstein;given-names:R. 10.1006/abio.2000.4855 11112280 REF Analytical biochemistry ref 287 2000 42073 Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor 72 82 surname:Evans;given-names:P. 10.1107/S0907444905036693 16369096 REF Acta crystallographica. Section D, Biological crystallography ref 62 2006 42209 Scaling and assessment of data quality SUPPL footnote 42248 Author Contributions J.-Y.C., L.L., C.-L.C., M.-J.L. and X.Y. designed and performed the experiments. K.T. collected diffraction data at APS. C.-H.Y. conceived and instructed the project. All authors are involved in data analysis. J.-Y.C. and C.-H.Y. wrote the manuscript. srep31425-f1.jpg f1 FIG fig_title_caption 42521 Overall structure of Naa60. 0.99692875 evidence cleaner0 2023-09-20T12:07:02Z DUMMY: structure 0.9992374 protein cleaner0 2023-09-20T09:44:48Z PR: Naa60 srep31425-f1.jpg f1 FIG fig_caption 42549 (A) Sequence alignment of Naa60 (NatF, HAT4) from different species including Homo sapiens (Homo), Bos mutus (Bos), Salmo salar (Salmo) and Xenopus (Silurana) tropicalis (Xenopus). Alignment was generated using NPS@ and ESPript.3.0 (http://espript.ibcp.fr/ESPript/ESPript/). Residues 4–6 are highlighted in red box. (B) The structure of hNaa60(1-199)/CoA complex is shown as a yellow cartoon model. The CoA molecule is shown as sticks. (C) The structure of hNaa60(1-242)/Ac-CoA complex is presented as a cartoon model in cyan. The Ac-CoA and malonate molecules are shown as cyan and purple sticks, respectively. The secondary structures are labeled starting with α0. (D) Superposition of hNaa60(1-242) (cyan), hNaa60(1-199) (yellow) and hNaa50 (pink, PDB 3TFY). The Ac-CoA of hNaa60(1-242)/Ac-CoA complex is represented as cyan sticks. 0.9933519 experimental_method cleaner0 2023-09-20T12:07:39Z MESH: Sequence alignment 0.9992231 protein cleaner0 2023-09-20T09:44:48Z PR: Naa60 0.874855 complex_assembly cleaner0 2023-09-20T09:55:36Z GO: NatF 0.7399594 protein cleaner0 2023-09-20T10:03:19Z PR: HAT4 0.99795175 species cleaner0 2023-09-20T10:20:08Z MESH: Homo sapiens 0.99839276 species cleaner0 2023-09-20T12:07:42Z MESH: Homo 0.9980613 species cleaner0 2023-09-20T12:07:44Z MESH: Bos mutus 0.9981675 species cleaner0 2023-09-20T12:07:46Z MESH: Bos 0.99803877 species cleaner0 2023-09-20T12:07:48Z MESH: Salmo salar 0.99874157 species cleaner0 2023-09-20T12:07:50Z MESH: Salmo 0.998781 species cleaner0 2023-09-20T12:07:52Z MESH: Xenopus 0.9966102 species cleaner0 2023-09-20T12:07:55Z MESH: Silurana 0.99740475 species cleaner0 2023-09-20T12:07:58Z MESH: tropicalis 0.9978409 species cleaner0 2023-09-20T12:08:01Z MESH: Xenopus 0.89359903 experimental_method cleaner0 2023-09-20T12:08:05Z MESH: Alignment 0.99120206 residue_range cleaner0 2023-09-20T12:08:11Z DUMMY: 4–6 0.9879758 evidence cleaner0 2023-09-20T12:08:21Z DUMMY: structure complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA 0.99892956 chemical cleaner0 2023-09-20T09:47:15Z CHEBI: CoA 0.99506253 evidence cleaner0 2023-09-20T12:08:13Z DUMMY: structure 0.9562601 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.99923086 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.9993051 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.9983317 structure_element cleaner0 2023-09-20T12:08:43Z SO: α0 0.9985247 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: Superposition 0.73757434 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.87932587 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 mutant MESH: cleaner0 2023-09-20T12:09:15Z hNaa60(1-199) 0.99920577 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.99919695 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.9380579 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA srep31425-f2.jpg f2 FIG fig_title_caption 43389 Amphipathicity of the α5 helix and alternative conformations of the β7-β8 hairpin. 0.8762618 protein_state cleaner0 2023-09-20T12:29:27Z DUMMY: Amphipathicity 0.99929076 structure_element cleaner0 2023-09-20T12:09:45Z SO: α5 helix 0.99915457 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin srep31425-f2.jpg f2 FIG fig_caption 43482 (A) The α5 helix of hNaa60(1-242) in one asymmetric unit (slate) interacts with another hNaa60 molecule in a neighboring asymmetric unit (cyan). A close view of the interaction is shown in red box. Side-chains of hydrophobic residues on α5 helix and the neighboring molecule participating in the interaction are shown as yellow and green sticks, respectively. (B) The α5 helix of hNaa60(1-199) in one asymmetric unit (yellow) interacts with another hNaa60 molecule in the neighboring asymmetric units (green). A close view of the interaction is shown in the red box. Side-chains of hydrophobic residues on α5 helix and the neighboring molecule (green) participating in the interaction are shown as yellow and green sticks, respectively. The third molecule (pink) does not directly interact with the α5 helix. (C) Superposition of hNaa60(1-199) (yellow) and hNaa60(1-242) (cyan) showing conformational change of the β7-β8 hairpin in these two structures. (D,E) Superposition of Hat1p/H4 (gray, drawn from PDB 4PSW) with hNaa60(1-242) (cyan, D) or hNaa60(1-199) (yellow, E). The histone H4 peptide (a KAT substrate) bound to Hat1p is shown in purple (D,E), while the peptide bound to hNaa50 (a NAT substrate, drawn from PDB 3TFY) is shown in orange (Nt-peptide) after superimposing hNaa50 (not shown in figure) on hNaa60 (D). The α-amine of the NAT substrate and ε-amine of the KAT substrate (along with the lysine side-chain) subject to acetylation are shown as sticks. 0.99926305 structure_element cleaner0 2023-09-20T12:09:49Z SO: α5 helix 0.63434005 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9174269 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 0.9991447 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9989952 structure_element cleaner0 2023-09-20T12:09:51Z SO: α5 helix 0.99929494 structure_element cleaner0 2023-09-20T12:09:54Z SO: α5 helix mutant MESH: cleaner0 2023-09-20T12:10:20Z hNaa60(1-199) 0.9989097 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9990158 structure_element cleaner0 2023-09-20T12:11:47Z SO: α5 helix 0.99918485 structure_element cleaner0 2023-09-20T12:11:51Z SO: α5 helix 0.9965055 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: Superposition mutant MESH: cleaner0 2023-09-20T12:11:01Z hNaa60(1-199) 0.97378564 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.98355436 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 0.9991952 structure_element cleaner0 2023-09-20T09:47:46Z SO: β7-β8 hairpin 0.99780375 evidence cleaner0 2023-09-20T12:11:43Z DUMMY: structures 0.9980095 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: Superposition 0.998798 protein cleaner0 2023-09-20T10:34:33Z PR: Hat1p 0.9936947 protein_type cleaner0 2023-09-20T10:09:14Z MESH: H4 0.994859 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.8863415 residue_range cleaner0 2023-09-20T10:24:08Z DUMMY: 1-242 mutant MESH: cleaner0 2023-09-20T12:11:20Z hNaa60(1-199) protein_type MESH: cleaner0 2023-09-20T10:08:43Z histone 0.9862388 protein_type cleaner0 2023-09-20T10:09:14Z MESH: H4 chemical CHEBI: cleaner0 2023-09-20T10:45:10Z peptide 0.9983368 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.99917674 protein_state cleaner0 2023-09-20T12:11:29Z DUMMY: bound to 0.9994037 protein cleaner0 2023-09-20T10:34:33Z PR: Hat1p chemical CHEBI: cleaner0 2023-09-20T10:45:10Z peptide 0.9989772 protein_state cleaner0 2023-09-20T12:11:29Z DUMMY: bound to 0.99940395 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.9982008 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT chemical CHEBI: cleaner0 2023-09-20T12:23:52Z Nt-peptide 0.99784434 experimental_method cleaner0 2023-09-20T12:39:01Z MESH: superimposing 0.99932384 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.999337 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9966156 protein_type cleaner0 2023-09-20T09:45:28Z MESH: NAT 0.9981242 protein_type cleaner0 2023-09-20T09:45:54Z MESH: KAT 0.9917366 residue_name cleaner0 2023-09-20T12:11:34Z SO: lysine 0.9904163 ptm cleaner0 2023-09-20T09:48:11Z MESH: acetylation srep31425-f3.jpg f3 FIG fig_title_caption 44987 Electron density map of the active site. 0.9986318 evidence cleaner0 2023-09-20T12:12:05Z DUMMY: Electron density map 0.9990533 site cleaner0 2023-09-20T10:34:00Z SO: active site srep31425-f3.jpg f3 FIG fig_caption 45028 The 2Fo-Fc maps contoured at 1.0σ are shown for hNaa60(1-242)/Ac-CoA (A), hNaa60(1-199)/CoA (B) and hNaa60(1-199) F34A/CoA (C). The putative substrate peptide binding site is indicated by the peptide (shown as pink sticks) from the hNaa50/CoA/peptide complex structure after superimposing hNaa50 on the hNaa60 structures determined in this study. The black arrow indicates the α-amine of the first Met (M1) (all panels). The purple arrow indicates the acetyl moiety of Ac-CoA (A). The red arrow indicates the alternative conformation of the thiol moiety of the co-enzyme when Phe 34 side-chain is displaced (B) or mutated to Ala (C). 0.99838984 evidence cleaner0 2023-09-20T12:12:09Z DUMMY: 2Fo-Fc maps complex_assembly GO: cleaner0 2023-09-20T10:21:35Z hNaa60(1-242)/Ac-CoA complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA complex_assembly GO: cleaner0 2023-09-20T12:12:54Z hNaa60(1-199) F34A/CoA 0.99883485 site cleaner0 2023-09-20T12:13:11Z SO: substrate peptide binding site 0.7129295 chemical cleaner0 2023-09-20T10:45:10Z CHEBI: peptide 0.99902344 complex_assembly cleaner0 2023-09-20T12:13:05Z GO: hNaa50/CoA/peptide 0.930311 evidence cleaner0 2023-09-20T12:13:14Z DUMMY: structure 0.9982256 experimental_method cleaner0 2023-09-20T12:39:06Z MESH: superimposing 0.99938524 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.9993223 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9975768 evidence cleaner0 2023-09-20T12:26:11Z DUMMY: structures residue_name_number DUMMY: cleaner0 2023-09-20T12:13:44Z first Met 0.99554753 residue_name_number cleaner0 2023-09-20T12:13:22Z DUMMY: M1 chemical CHEBI: cleaner0 2023-09-20T11:19:06Z acetyl 0.9990597 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.9792496 residue_name_number cleaner0 2023-09-20T09:47:40Z DUMMY: Phe 34 0.99492764 experimental_method cleaner0 2023-09-20T12:39:10Z MESH: mutated 0.9958605 residue_name cleaner0 2023-09-20T12:15:47Z SO: Ala srep31425-f4.jpg f4 FIG fig_title_caption 45670 Structural basis for hNaa60 catalytic activity. 0.99925846 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 srep31425-f4.jpg f4 FIG fig_caption 45718 (A) Superposition of hNaa60 active site (cyan) on that of hNaa50 (pink, PDB 3TFY). Side-chains of key catalytic and substrate-binding residues are highlighted as sticks. The malonate molecule in the hNaa60(1-242)/Ac-CoA structure and the peptide in the hNaa50/CoA/peptide structure are shown as purple and yellow sticks respectively. (B) A close view of the active site of hNaa60. Residues Glu 37, Tyr 97 and His 138 in hNaa60 (cyan) and corresponding residues (Tyr 73 and His 112) in hNaa50 (pink) as well as the side-chain of corresponding residues (Glu 24, His 72 and His 111) in complexed formed hNaa10p (warmpink) are highlighted as sticks. The water molecules participating in catalysis in the hNaa60 and hNaa50 structures are showed as green and red spheres, separately. (C) The interaction between the malonate molecule and surrounding residues observed in the hNaa60(1-242)/Ac-CoA structure. The yellow dotted lines indicate the hydrogen bonds. (D) A zoomed view of β3-β4 loop of hNaa60. Key residues discussed in the text (cyan), the malonate (purple) and Ac-CoA (gray) are shown as sticks. The yellow dotted lines indicate the salt bridges. 0.9982657 experimental_method cleaner0 2023-09-20T10:29:16Z MESH: Superposition 0.9993099 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.99906766 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.9993212 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.9985394 site cleaner0 2023-09-20T12:18:09Z SO: catalytic and substrate-binding residues 0.99922884 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.99856216 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.8332482 evidence cleaner0 2023-09-20T12:18:07Z DUMMY: structure chemical CHEBI: cleaner0 2023-09-20T10:45:10Z peptide 0.9987973 complex_assembly cleaner0 2023-09-20T12:16:51Z GO: hNaa50/CoA/peptide 0.8488961 evidence cleaner0 2023-09-20T12:18:05Z DUMMY: structure 0.9990835 site cleaner0 2023-09-20T10:34:00Z SO: active site 0.9993224 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.99730325 residue_name_number cleaner0 2023-09-20T10:48:36Z DUMMY: Glu 37 0.9976365 residue_name_number cleaner0 2023-09-20T09:47:56Z DUMMY: Tyr 97 0.99765295 residue_name_number cleaner0 2023-09-20T09:48:00Z DUMMY: His 138 0.999326 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.99748105 residue_name_number cleaner0 2023-09-20T10:47:23Z DUMMY: Tyr 73 0.9978272 residue_name_number cleaner0 2023-09-20T10:47:27Z DUMMY: His 112 0.99931073 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.997231 residue_name_number cleaner0 2023-09-20T12:17:12Z DUMMY: Glu 24 0.9976933 residue_name_number cleaner0 2023-09-20T12:17:21Z DUMMY: His 72 0.99723536 residue_name_number cleaner0 2023-09-20T12:17:26Z DUMMY: His 111 0.9981933 protein_state cleaner0 2023-09-20T12:29:34Z DUMMY: complexed 0.99777704 protein cleaner0 2023-09-20T12:21:31Z PR: hNaa10p 0.99893194 chemical cleaner0 2023-09-20T10:47:55Z CHEBI: water 0.9992391 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9991731 protein cleaner0 2023-09-20T12:20:55Z PR: hNaa50 0.98832756 evidence cleaner0 2023-09-20T12:26:16Z DUMMY: structures 0.9992488 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.99859303 complex_assembly cleaner0 2023-09-20T10:21:35Z GO: hNaa60(1-242)/Ac-CoA 0.9722767 evidence cleaner0 2023-09-20T12:18:03Z DUMMY: structure 0.9898262 bond_interaction cleaner0 2023-09-20T10:49:55Z MESH: hydrogen bonds 0.99908924 structure_element cleaner0 2023-09-20T10:50:37Z SO: β3-β4 loop 0.9993191 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 0.9992403 chemical cleaner0 2023-09-20T10:40:49Z CHEBI: malonate 0.9991649 chemical cleaner0 2023-09-20T09:47:04Z CHEBI: Ac-CoA 0.9678509 bond_interaction cleaner0 2023-09-20T12:18:23Z MESH: salt bridges srep31425-f5.jpg f5 FIG fig_title_caption 46876 Catalytic activity of hNaa60 and mutant proteins. 0.9993112 protein cleaner0 2023-09-20T09:46:48Z PR: hNaa60 protein_state DUMMY: cleaner0 2023-09-20T10:43:02Z mutant srep31425-f5.jpg f5 FIG fig_caption 46926 (A) Catalytic efficiency (shown as kcat/Km values) of hNaa60 (1-199) WT and mutants. Error bars indicate the Standard Error (SE). (B) CD spectra of wild-type and mutant proteins from 250 nm to 190 nm. The sample concentration was 4.5 μM in 20 mM Tris, pH 8.0, 150 mM NaCl, 1% glycerol and 1 mM TCEP at room temperature. 0.996763 evidence cleaner0 2023-09-20T12:18:55Z DUMMY: Catalytic efficiency 0.9971283 evidence cleaner0 2023-09-20T12:18:50Z DUMMY: kcat 0.9264873 evidence cleaner0 2023-09-20T12:18:53Z DUMMY: Km mutant MESH: cleaner0 2023-09-20T12:33:47Z hNaa60 (1-199) 0.9993111 protein_state cleaner0 2023-09-20T10:50:02Z DUMMY: WT 0.9977901 protein_state cleaner0 2023-09-20T10:56:38Z DUMMY: mutants 0.97654265 experimental_method cleaner0 2023-09-20T10:42:24Z MESH: CD 0.72563523 evidence cleaner0 2023-09-20T10:49:01Z DUMMY: spectra 0.9991898 protein_state cleaner0 2023-09-20T11:07:32Z DUMMY: wild-type 0.9887416 protein_state cleaner0 2023-09-20T10:43:02Z DUMMY: mutant 0.9965485 chemical cleaner0 2023-09-20T12:24:01Z CHEBI: TCEP t1.xml t1 TABLE table_title_caption 47259 Data collection and refinement statistics. evidence DUMMY: cleaner0 2023-09-20T12:19:11Z Data collection and refinement statistics t1.xml t1 TABLE table <?xml version="1.0" encoding="UTF-8"?> <table frame="hsides" rules="groups" border="1"><colgroup><col align="left"/><col align="center"/><col align="center"/><col align="center"/></colgroup><thead valign="bottom"><tr><th align="left" valign="top" charoff="50">Structure and PDB ID</th><th align="center" valign="top" charoff="50">hNaa60(1-242)/Ac-CoA 5HGZ</th><th align="center" valign="top" charoff="50">hNaa60(1-199)/CoA 5HH0</th><th align="center" valign="top" charoff="50">hNaa60(1-199)F34A/CoA 5HH1</th></tr></thead><tbody valign="top"><tr><td colspan="4" align="left" valign="top" charoff="50">Data collection<xref ref-type="fn" rid="t1-fn1">*</xref></td></tr><tr><td align="left" valign="top" charoff="50"> Space group</td><td align="center" valign="top" charoff="50"><italic>P2</italic><sub><italic>1</italic></sub><italic>2</italic><sub><italic>1</italic></sub><italic>2</italic><sub><italic>1</italic></sub></td><td align="center" valign="top" charoff="50"><italic>P2</italic><sub><italic>1</italic></sub><italic>2</italic><sub><italic>1</italic></sub><italic>2</italic></td><td align="center" valign="top" charoff="50"><italic>P2</italic><sub><italic>1</italic></sub><italic>2</italic><sub><italic>1</italic></sub><italic>2</italic></td></tr><tr><td colspan="4" align="left" valign="top" charoff="50">Cell dimensions</td></tr><tr><td align="left" valign="top" charoff="50"> <italic>a, b, c</italic> (Å)</td><td align="center" valign="top" charoff="50">53.3, 57.4, 68.8</td><td align="center" valign="top" charoff="50">67.8, 73.8, 43.2</td><td align="center" valign="top" charoff="50">66.7, 74.0, 43.5</td></tr><tr><td align="left" valign="top" charoff="50"> α,β,γ (°)</td><td align="center" valign="top" charoff="50">90.0, 90.0, 90.0</td><td align="center" valign="top" charoff="50">90.0, 90.0, 90.0</td><td align="center" valign="top" charoff="50">90.0, 90.0, 90.0</td></tr><tr><td align="left" valign="top" charoff="50">Resolution (Å)</td><td align="center" valign="top" charoff="50">50–1.38 (1.42–1.38)</td><td align="center" valign="top" charoff="50">50–1.60 (1.66–1.60)</td><td align="center" valign="top" charoff="50">50–1.80 (1.86–1.80)</td></tr><tr><td align="left" valign="top" charoff="50"><italic>R</italic><sub>p.i.m.</sub>(%)<xref ref-type="fn" rid="t1-fn2">**</xref></td><td align="center" valign="top" charoff="50">3.0 (34.4)</td><td align="center" valign="top" charoff="50">2.1 (32.5)</td><td align="center" valign="top" charoff="50">2.6 (47.8)</td></tr><tr><td align="left" valign="top" charoff="50"><italic>I</italic>/<italic>σ</italic></td><td align="center" valign="top" charoff="50">21.5 (2.0)</td><td align="center" valign="top" charoff="50">31.8 (2.0)</td><td align="center" valign="top" charoff="50">28.0 (2.4)</td></tr><tr><td align="left" valign="top" charoff="50">Completeness (%)</td><td align="center" valign="top" charoff="50">99.8 (99.1)</td><td align="center" valign="top" charoff="50">99.6 (98.5)</td><td align="center" valign="top" charoff="50">99.9 (99.7)</td></tr><tr><td align="left" valign="top" charoff="50">Redundancy</td><td align="center" valign="top" charoff="50">6.9 (5.0)</td><td align="center" valign="top" charoff="50">6.9 (6.2)</td><td align="center" valign="top" charoff="50">6.3 (5.9)</td></tr><tr><td colspan="4" align="left" valign="top" charoff="50">Refinement</td></tr><tr><td align="left" valign="top" charoff="50"> Resolution (Å)</td><td align="center" valign="top" charoff="50">25.81–1.38</td><td align="center" valign="top" charoff="50">33.55–1.60</td><td align="center" valign="top" charoff="50">43.52–1.80</td></tr><tr><td align="left" valign="top" charoff="50"> No. reflections</td><td align="center" valign="top" charoff="50">43660</td><td align="center" valign="top" charoff="50">28588</td><td align="center" valign="top" charoff="50">20490</td></tr><tr><td align="left" valign="top" charoff="50"><italic> R</italic><sub>work</sub>/<italic>R</italic><sub>free</sub></td><td align="center" valign="top" charoff="50">0.182/0.192</td><td align="center" valign="top" charoff="50">0.181/0.184</td><td align="center" valign="top" charoff="50">0.189/0.209</td></tr><tr><td colspan="4" align="left" valign="top" charoff="50">No. atoms</td></tr><tr><td align="left" valign="top" charoff="50"> Protein</td><td align="center" valign="top" charoff="50">1717</td><td align="center" valign="top" charoff="50">1576</td><td align="center" valign="top" charoff="50">1566</td></tr><tr><td align="left" valign="top" charoff="50"> Ligand/ion</td><td align="center" valign="top" charoff="50">116</td><td align="center" valign="top" charoff="50">96</td><td align="center" valign="top" charoff="50">96</td></tr><tr><td align="left" valign="top" charoff="50"> Water</td><td align="center" valign="top" charoff="50">289</td><td align="center" valign="top" charoff="50">258</td><td align="center" valign="top" charoff="50">168</td></tr><tr><td colspan="4" align="left" valign="top" charoff="50"><italic>B</italic>-factors</td></tr><tr><td align="left" valign="top" charoff="50"> Protein</td><td align="center" valign="top" charoff="50">23.8</td><td align="center" valign="top" charoff="50">32.0</td><td align="center" valign="top" charoff="50">37.4</td></tr><tr><td align="left" valign="top" charoff="50"> Ligand/ion</td><td align="center" valign="top" charoff="50">22.2</td><td align="center" valign="top" charoff="50">34.6</td><td align="center" valign="top" charoff="50">43.7</td></tr><tr><td align="left" valign="top" charoff="50"> Water</td><td align="center" valign="top" charoff="50">35.1</td><td align="center" valign="top" charoff="50">46.4</td><td align="center" valign="top" charoff="50">49.1</td></tr><tr><td colspan="4" align="left" valign="top" charoff="50">R.m.s. deviations</td></tr><tr><td align="left" valign="top" charoff="50"> Bond lengths (Å)</td><td align="center" valign="top" charoff="50">0.018</td><td align="center" valign="top" charoff="50">0.017</td><td align="center" valign="top" charoff="50">0.015</td></tr><tr><td align="left" valign="top" charoff="50"> Bond angles (°)</td><td align="center" valign="top" charoff="50">1.529</td><td align="center" valign="top" charoff="50">1.651</td><td align="center" valign="top" charoff="50">1.581</td></tr><tr><td colspan="4" align="left" valign="top" charoff="50">Ramachandran Plot</td></tr><tr><td align="left" valign="top" charoff="50"> Favoured region</td><td align="center" valign="top" charoff="50">98.98%</td><td align="center" valign="top" charoff="50">98.93%</td><td align="center" valign="top" charoff="50">98.96%</td></tr><tr><td align="left" valign="top" charoff="50"> Allowed region</td><td align="center" valign="top" charoff="50">1.02%</td><td align="center" valign="top" charoff="50">1.07%</td><td align="center" valign="top" charoff="50">1.04%</td></tr><tr><td align="left" valign="top" charoff="50"> Outliers</td><td align="center" valign="top" charoff="50">0.00%</td><td align="center" valign="top" charoff="50">0.00%</td><td align="center" valign="top" charoff="50">0.00%</td></tr></tbody></table> 47302 Structure and PDB ID hNaa60(1-242)/Ac-CoA 5HGZ hNaa60(1-199)/CoA 5HH0 hNaa60(1-199)F34A/CoA 5HH1 Data collection*  Space group P212121 P21212 P21212 Cell dimensions  a, b, c (Å) 53.3, 57.4, 68.8 67.8, 73.8, 43.2 66.7, 74.0, 43.5  α,β,γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 Resolution (Å) 50–1.38 (1.42–1.38) 50–1.60 (1.66–1.60) 50–1.80 (1.86–1.80) Rp.i.m.(%)** 3.0 (34.4) 2.1 (32.5) 2.6 (47.8) I/σ 21.5 (2.0) 31.8 (2.0) 28.0 (2.4) Completeness (%) 99.8 (99.1) 99.6 (98.5) 99.9 (99.7) Redundancy 6.9 (5.0) 6.9 (6.2) 6.3 (5.9) Refinement  Resolution (Å) 25.81–1.38 33.55–1.60 43.52–1.80  No. reflections 43660 28588 20490  Rwork/Rfree 0.182/0.192 0.181/0.184 0.189/0.209 No. atoms  Protein 1717 1576 1566  Ligand/ion 116 96 96  Water 289 258 168 B-factors  Protein 23.8 32.0 37.4  Ligand/ion 22.2 34.6 43.7  Water 35.1 46.4 49.1 R.m.s. deviations  Bond lengths (Å) 0.018 0.017 0.015  Bond angles (°) 1.529 1.651 1.581 Ramachandran Plot  Favoured region 98.98% 98.93% 98.96%  Allowed region 1.02% 1.07% 1.04%  Outliers 0.00% 0.00% 0.00% complex_assembly GO: cleaner0 2023-09-20T10:21:35Z hNaa60(1-242)/Ac-CoA complex_assembly GO: cleaner0 2023-09-20T10:21:54Z hNaa60(1-199)/CoA complex_assembly GO: cleaner0 2023-09-20T12:20:02Z hNaa60(1-199)F34A/CoA chemical CHEBI: cleaner0 2023-09-20T10:47:55Z Water chemical CHEBI: cleaner0 2023-09-20T10:47:55Z Water evidence DUMMY: cleaner0 2023-09-20T12:20:22Z R.m.s. deviations t1.xml t1 TABLE table_footnote 48477 *Values in parentheses are for highest-resolution shell. One crystal was used for each data set. 0.97377807 evidence cleaner0 2023-09-20T12:20:27Z DUMMY: crystal t1.xml t1 TABLE table_footnote 48574 **Rp.i.m., a redundancy-independent R factor was used to evaluate the diffraction data quality as was proposed by Evans. 0.9949857 evidence cleaner0 2023-09-20T12:20:29Z DUMMY: R factor 0.9745873 evidence cleaner0 2023-09-20T12:20:32Z DUMMY: diffraction data