File size: 7,259 Bytes
14ccf7d 5612137 14ccf7d 4483661 14ccf7d 74a2199 14ccf7d 74a2199 14ccf7d 74a2199 14ccf7d 74a2199 14ccf7d 74a2199 14ccf7d 74a2199 14ccf7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""
import json
import os
from copy import deepcopy
import re
import unicodedata
from more_itertools import windowed
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
ami-ihmを音声認識した誤り訂正用データセット
"""
_HOMEPAGE = ""
_LICENSE = ""
URLS = {
"ctc-large": {
"text": "https://huggingface.co/datasets/Padomin/ami-ihm-asr/resolve/main/ami-ihm-ctc-large-normalized.tar.gz",
},
}
class ami_ihm_asr_config(datasets.BuilderConfig):
def __init__(self, n_fronts=0, n_bodies=1, n_rears=0, front_prefix='front:\n', body_prefix='body:\n', rear_prefix='rear:\n', **kwargs):
super(ami_ihm_asr_config, self).__init__(**kwargs)
self.n_fronts = n_fronts
self.n_bodies = n_bodies
self.n_rears = n_rears
self.front_prefix = front_prefix
self.body_prefix = body_prefix
self.rear_prefix = rear_prefix
class ami_ihm_asr(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.2.0")
BUILDER_CONFIGS = [
ami_ihm_asr_config(name="v1", version=VERSION),
ami_ihm_asr_config(name="v2", version=VERSION),
ami_ihm_asr_config(name="ctc-large", version=VERSION),
ami_ihm_asr_config(name="xlsr", version=VERSION),
ami_ihm_asr_config(name="ctc-large-oracle", version=VERSION),
]
DEFAULT_CONFIG_NAME = "ctc-large" # It's not mandatory to have a default configuration. Just use one if it make sense.
BUILDER_CONFIG_CLASS = ami_ihm_asr_config
def _info(self):
feature_dict = {
"text": datasets.Value("string"),
"text_asr": datasets.Value("string"),
"src": datasets.Value("string"),
"tgt": datasets.Value("string"),
"id": datasets.Value("string")
}
features = datasets.Features(feature_dict)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if "v1" in self.config.name:
urls = deepcopy(URLS["v1"])
if "v2" in self.config.name:
urls = deepcopy(URLS["v2"])
if "ctc-large" in self.config.name:
urls = deepcopy(URLS["ctc-large"])
if "xlsr" in self.config.name:
urls = deepcopy(URLS["xlsr"])
if "ctc-large-oracle" in self.config.name:
urls = deepcopy(URLS["ctc-large"])
dl_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(dl_path["text"], "train.jsonl"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(dl_path["text"], "test.jsonl"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(dl_path["text"], "validation.jsonl"),
"split": "validation",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
id_ = 0
with open(filepath, encoding="utf-8") as f:
for line in f:
doc = json.loads(line)
utterances = doc['utterances']
# divide text and asr
texts_asr = [utt['asr'] for utt in utterances]
texts = [utt['text'] for utt in utterances]
# window considering front and rear contexts
if split == "train":
windowed_texts_asr = windowed([''] * self.config.n_fronts + texts_asr + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears)
windowed_oracles = windowed([''] * self.config.n_fronts + texts + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears)
windowed_texts = windowed(texts, self.config.n_bodies)
else:
windowed_texts_asr = windowed([''] * self.config.n_fronts + texts_asr + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears, fillvalue='', step=self.config.n_bodies)
windowed_oracles = windowed([''] * self.config.n_fronts + texts + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears, fillvalue='', step=self.config.n_bodies)
windowed_texts = windowed(texts, self.config.n_bodies, fillvalue='', step=self.config.n_bodies)
for text_asr, text, oracle, utt in zip(windowed_texts_asr, windowed_texts, windowed_oracles, utterances):
src = ''
if self.config.n_fronts > 0:
src += self.config.front_prefix
if "oracle" in self.config.name:
src += '\n'.join(oracle[:self.config.n_fronts])
else:
src += '\n'.join(text_asr[:self.config.n_fronts])
src += '\n'
src += self.config.body_prefix
src += '\n'.join(text_asr[self.config.n_fronts:self.config.n_fronts + self.config.n_bodies])
if self.config.n_rears > 0:
src += '\n' + self.config.rear_prefix
if "oracle" in self.config.name:
src += '\n'.join(oracle[self.config.n_fronts + self.config.n_bodies:])
else:
src += '\n'.join(text_asr[self.config.n_fronts + self.config.n_bodies:])
tgt = '\n'.join(text)
data = {
"text": utt["text"],
"text_asr": utt["asr"],
'src': src,
'tgt': tgt,
'id': doc["id"],
}
yield id_, data
id_ += 1 |