File size: 7,259 Bytes
14ccf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5612137
14ccf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4483661
14ccf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a2199
 
14ccf7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a2199
14ccf7d
 
 
74a2199
14ccf7d
 
74a2199
14ccf7d
 
 
74a2199
 
 
 
14ccf7d
 
 
 
 
74a2199
 
 
 
14ccf7d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Common Voice Dataset"""

import json
import os
from copy import deepcopy
import re
import unicodedata
from more_itertools import windowed
import datasets

_CITATION = """\
"""

_DESCRIPTION = """\
ami-ihmを音声認識した誤り訂正用データセット
"""
_HOMEPAGE = ""
_LICENSE = ""

URLS = {
    "ctc-large": {
        "text": "https://huggingface.co/datasets/Padomin/ami-ihm-asr/resolve/main/ami-ihm-ctc-large-normalized.tar.gz",
    },
}


class ami_ihm_asr_config(datasets.BuilderConfig):
    def __init__(self, n_fronts=0, n_bodies=1, n_rears=0, front_prefix='front:\n', body_prefix='body:\n', rear_prefix='rear:\n', **kwargs):
        super(ami_ihm_asr_config, self).__init__(**kwargs)
        self.n_fronts = n_fronts
        self.n_bodies = n_bodies
        self.n_rears = n_rears
        self.front_prefix = front_prefix
        self.body_prefix = body_prefix
        self.rear_prefix = rear_prefix

class ami_ihm_asr(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.2.0")
    BUILDER_CONFIGS = [
        ami_ihm_asr_config(name="v1", version=VERSION),
        ami_ihm_asr_config(name="v2", version=VERSION),
        ami_ihm_asr_config(name="ctc-large", version=VERSION),
        ami_ihm_asr_config(name="xlsr", version=VERSION),
        ami_ihm_asr_config(name="ctc-large-oracle", version=VERSION),
    ]
    DEFAULT_CONFIG_NAME = "ctc-large"  # It's not mandatory to have a default configuration. Just use one if it make sense.
    BUILDER_CONFIG_CLASS = ami_ihm_asr_config

    def _info(self):
        feature_dict = {
                "text": datasets.Value("string"),
                "text_asr": datasets.Value("string"),
                "src": datasets.Value("string"),
                "tgt": datasets.Value("string"),
                "id": datasets.Value("string")
        }

        features = datasets.Features(feature_dict)
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        if "v1" in self.config.name:
            urls = deepcopy(URLS["v1"])
        if "v2" in self.config.name:
            urls = deepcopy(URLS["v2"])
        if "ctc-large" in self.config.name:
            urls = deepcopy(URLS["ctc-large"])
        if "xlsr" in self.config.name:
            urls = deepcopy(URLS["xlsr"])
        if "ctc-large-oracle" in self.config.name:
            urls = deepcopy(URLS["ctc-large"])
            
        dl_path = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(dl_path["text"], "train.jsonl"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(dl_path["text"], "test.jsonl"),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(dl_path["text"], "validation.jsonl"),
                    "split": "validation",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""
        id_ = 0
        with open(filepath, encoding="utf-8") as f:
            for line in f:
                doc = json.loads(line)
                utterances = doc['utterances']
                # divide text and asr
                texts_asr = [utt['asr'] for utt in utterances]
                texts = [utt['text'] for utt in utterances]
                # window considering front and rear contexts
                if split == "train":
                    windowed_texts_asr = windowed([''] * self.config.n_fronts + texts_asr + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears)
                    windowed_oracles = windowed([''] * self.config.n_fronts + texts + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears)
                    windowed_texts = windowed(texts, self.config.n_bodies)
                else:
                    windowed_texts_asr = windowed([''] * self.config.n_fronts + texts_asr + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears, fillvalue='', step=self.config.n_bodies)
                    windowed_oracles = windowed([''] * self.config.n_fronts + texts + [''] * self.config.n_rears, self.config.n_bodies + self.config.n_fronts + self.config.n_rears, fillvalue='', step=self.config.n_bodies)
                    windowed_texts = windowed(texts, self.config.n_bodies, fillvalue='', step=self.config.n_bodies)
                
                for text_asr, text, oracle, utt in zip(windowed_texts_asr, windowed_texts, windowed_oracles, utterances):
                    src = ''
                    if self.config.n_fronts > 0:
                        src += self.config.front_prefix
                        if "oracle" in self.config.name:
                            src += '\n'.join(oracle[:self.config.n_fronts])
                        else:
                            src += '\n'.join(text_asr[:self.config.n_fronts])
                        src += '\n'
                    src += self.config.body_prefix
                    src += '\n'.join(text_asr[self.config.n_fronts:self.config.n_fronts + self.config.n_bodies])
                    if self.config.n_rears > 0:
                        src += '\n' + self.config.rear_prefix
                        if "oracle" in self.config.name:
                            src += '\n'.join(oracle[self.config.n_fronts + self.config.n_bodies:])
                        else:
                            src += '\n'.join(text_asr[self.config.n_fronts + self.config.n_bodies:])
                    tgt = '\n'.join(text)
                    
                    data = {
                        "text": utt["text"],
                        "text_asr": utt["asr"],
                        'src': src,
                        'tgt': tgt,
                        'id': doc["id"],
                    }
                    
                    yield id_, data
                    
                    id_ += 1