Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Size:
10K - 100K
ArXiv:
Tags:
sentence-transformers
License:
add dataset_info in dataset metadata
Browse files
README.md
CHANGED
@@ -31,6 +31,207 @@ task_ids:
|
|
31 |
- semantic-similarity-scoring
|
32 |
paperswithcode_id: null
|
33 |
pretty_name: STSb Multi MT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
---
|
35 |
|
36 |
# Dataset Card for STSb Multi MT
|
@@ -201,4 +402,4 @@ url={https://github.com/PhilipMay/stsb-multi-mt}
|
|
201 |
|
202 |
### Contributions
|
203 |
|
204 |
-
Thanks to [@PhilipMay](https://github.com/PhilipMay) for adding this dataset.
|
|
|
31 |
- semantic-similarity-scoring
|
32 |
paperswithcode_id: null
|
33 |
pretty_name: STSb Multi MT
|
34 |
+
dataset_info:
|
35 |
+
- config_name: en
|
36 |
+
features:
|
37 |
+
- name: sentence1
|
38 |
+
dtype: string
|
39 |
+
- name: sentence2
|
40 |
+
dtype: string
|
41 |
+
- name: similarity_score
|
42 |
+
dtype: float32
|
43 |
+
splits:
|
44 |
+
- name: dev
|
45 |
+
num_bytes: 210072
|
46 |
+
num_examples: 1500
|
47 |
+
- name: test
|
48 |
+
num_bytes: 164466
|
49 |
+
num_examples: 1379
|
50 |
+
- name: train
|
51 |
+
num_bytes: 731803
|
52 |
+
num_examples: 5749
|
53 |
+
download_size: 1072429
|
54 |
+
dataset_size: 1106341
|
55 |
+
- config_name: de
|
56 |
+
features:
|
57 |
+
- name: sentence1
|
58 |
+
dtype: string
|
59 |
+
- name: sentence2
|
60 |
+
dtype: string
|
61 |
+
- name: similarity_score
|
62 |
+
dtype: float32
|
63 |
+
splits:
|
64 |
+
- name: dev
|
65 |
+
num_bytes: 247077
|
66 |
+
num_examples: 1500
|
67 |
+
- name: test
|
68 |
+
num_bytes: 193333
|
69 |
+
num_examples: 1379
|
70 |
+
- name: train
|
71 |
+
num_bytes: 867473
|
72 |
+
num_examples: 5749
|
73 |
+
download_size: 1279173
|
74 |
+
dataset_size: 1307883
|
75 |
+
- config_name: es
|
76 |
+
features:
|
77 |
+
- name: sentence1
|
78 |
+
dtype: string
|
79 |
+
- name: sentence2
|
80 |
+
dtype: string
|
81 |
+
- name: similarity_score
|
82 |
+
dtype: float32
|
83 |
+
splits:
|
84 |
+
- name: dev
|
85 |
+
num_bytes: 245250
|
86 |
+
num_examples: 1500
|
87 |
+
- name: test
|
88 |
+
num_bytes: 194616
|
89 |
+
num_examples: 1379
|
90 |
+
- name: train
|
91 |
+
num_bytes: 887101
|
92 |
+
num_examples: 5749
|
93 |
+
download_size: 1294160
|
94 |
+
dataset_size: 1326967
|
95 |
+
- config_name: fr
|
96 |
+
features:
|
97 |
+
- name: sentence1
|
98 |
+
dtype: string
|
99 |
+
- name: sentence2
|
100 |
+
dtype: string
|
101 |
+
- name: similarity_score
|
102 |
+
dtype: float32
|
103 |
+
splits:
|
104 |
+
- name: dev
|
105 |
+
num_bytes: 254083
|
106 |
+
num_examples: 1500
|
107 |
+
- name: test
|
108 |
+
num_bytes: 200446
|
109 |
+
num_examples: 1379
|
110 |
+
- name: train
|
111 |
+
num_bytes: 910195
|
112 |
+
num_examples: 5749
|
113 |
+
download_size: 1332515
|
114 |
+
dataset_size: 1364724
|
115 |
+
- config_name: it
|
116 |
+
features:
|
117 |
+
- name: sentence1
|
118 |
+
dtype: string
|
119 |
+
- name: sentence2
|
120 |
+
dtype: string
|
121 |
+
- name: similarity_score
|
122 |
+
dtype: float32
|
123 |
+
splits:
|
124 |
+
- name: dev
|
125 |
+
num_bytes: 243144
|
126 |
+
num_examples: 1500
|
127 |
+
- name: test
|
128 |
+
num_bytes: 191647
|
129 |
+
num_examples: 1379
|
130 |
+
- name: train
|
131 |
+
num_bytes: 871526
|
132 |
+
num_examples: 5749
|
133 |
+
download_size: 1273630
|
134 |
+
dataset_size: 1306317
|
135 |
+
- config_name: nl
|
136 |
+
features:
|
137 |
+
- name: sentence1
|
138 |
+
dtype: string
|
139 |
+
- name: sentence2
|
140 |
+
dtype: string
|
141 |
+
- name: similarity_score
|
142 |
+
dtype: float32
|
143 |
+
splits:
|
144 |
+
- name: dev
|
145 |
+
num_bytes: 234887
|
146 |
+
num_examples: 1500
|
147 |
+
- name: test
|
148 |
+
num_bytes: 182904
|
149 |
+
num_examples: 1379
|
150 |
+
- name: train
|
151 |
+
num_bytes: 833667
|
152 |
+
num_examples: 5749
|
153 |
+
download_size: 1217753
|
154 |
+
dataset_size: 1251458
|
155 |
+
- config_name: pl
|
156 |
+
features:
|
157 |
+
- name: sentence1
|
158 |
+
dtype: string
|
159 |
+
- name: sentence2
|
160 |
+
dtype: string
|
161 |
+
- name: similarity_score
|
162 |
+
dtype: float32
|
163 |
+
splits:
|
164 |
+
- name: dev
|
165 |
+
num_bytes: 231758
|
166 |
+
num_examples: 1500
|
167 |
+
- name: test
|
168 |
+
num_bytes: 181266
|
169 |
+
num_examples: 1379
|
170 |
+
- name: train
|
171 |
+
num_bytes: 828433
|
172 |
+
num_examples: 5749
|
173 |
+
download_size: 1212336
|
174 |
+
dataset_size: 1241457
|
175 |
+
- config_name: pt
|
176 |
+
features:
|
177 |
+
- name: sentence1
|
178 |
+
dtype: string
|
179 |
+
- name: sentence2
|
180 |
+
dtype: string
|
181 |
+
- name: similarity_score
|
182 |
+
dtype: float32
|
183 |
+
splits:
|
184 |
+
- name: dev
|
185 |
+
num_bytes: 240559
|
186 |
+
num_examples: 1500
|
187 |
+
- name: test
|
188 |
+
num_bytes: 189163
|
189 |
+
num_examples: 1379
|
190 |
+
- name: train
|
191 |
+
num_bytes: 854356
|
192 |
+
num_examples: 5749
|
193 |
+
download_size: 1251508
|
194 |
+
dataset_size: 1284078
|
195 |
+
- config_name: ru
|
196 |
+
features:
|
197 |
+
- name: sentence1
|
198 |
+
dtype: string
|
199 |
+
- name: sentence2
|
200 |
+
dtype: string
|
201 |
+
- name: similarity_score
|
202 |
+
dtype: float32
|
203 |
+
splits:
|
204 |
+
- name: dev
|
205 |
+
num_bytes: 386268
|
206 |
+
num_examples: 1500
|
207 |
+
- name: test
|
208 |
+
num_bytes: 300007
|
209 |
+
num_examples: 1379
|
210 |
+
- name: train
|
211 |
+
num_bytes: 1391674
|
212 |
+
num_examples: 5749
|
213 |
+
download_size: 2051645
|
214 |
+
dataset_size: 2077949
|
215 |
+
- config_name: zh
|
216 |
+
features:
|
217 |
+
- name: sentence1
|
218 |
+
dtype: string
|
219 |
+
- name: sentence2
|
220 |
+
dtype: string
|
221 |
+
- name: similarity_score
|
222 |
+
dtype: float32
|
223 |
+
splits:
|
224 |
+
- name: dev
|
225 |
+
num_bytes: 195821
|
226 |
+
num_examples: 1500
|
227 |
+
- name: test
|
228 |
+
num_bytes: 154834
|
229 |
+
num_examples: 1379
|
230 |
+
- name: train
|
231 |
+
num_bytes: 694424
|
232 |
+
num_examples: 5749
|
233 |
+
download_size: 1006892
|
234 |
+
dataset_size: 1045079
|
235 |
---
|
236 |
|
237 |
# Dataset Card for STSb Multi MT
|
|
|
402 |
|
403 |
### Contributions
|
404 |
|
405 |
+
Thanks to [@PhilipMay](https://github.com/PhilipMay) for adding this dataset.
|