File size: 3,074 Bytes
eb29fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
{}
---
# AutoTrain Dataset for project: sample-diabetes-predict
## Dataset Descritpion
This dataset has been automatically processed by AutoTrain for project sample-diabetes-predict.
### Languages
The BCP-47 code for the dataset's language is unk.
## Dataset Structure
### Data Instances
A sample from this dataset looks as follows:
```json
[
{
"target": 0,
"feat_HighBP": 0.0,
"feat_HighChol": 0.0,
"feat_CholCheck": 1.0,
"feat_BMI": 34.0,
"feat_Smoker": 1.0,
"feat_Stroke": 0.0,
"feat_HeartDiseaseorAttack": 0.0,
"feat_PhysActivity": 1.0,
"feat_Fruits": 1.0,
"feat_Veggies": 1.0,
"feat_HvyAlcoholConsump": 0.0,
"feat_AnyHealthcare": 1.0,
"feat_NoDocbcCost": 0.0,
"feat_GenHlth": 3.0,
"feat_MentHlth": 0.0,
"feat_PhysHlth": 0.0,
"feat_DiffWalk": 0.0,
"feat_Sex": 0.0,
"feat_Age": 6.0,
"feat_Education": 6.0,
"feat_Income": 7.0
},
{
"target": 1,
"feat_HighBP": 0.0,
"feat_HighChol": 0.0,
"feat_CholCheck": 1.0,
"feat_BMI": 46.0,
"feat_Smoker": 1.0,
"feat_Stroke": 0.0,
"feat_HeartDiseaseorAttack": 0.0,
"feat_PhysActivity": 1.0,
"feat_Fruits": 1.0,
"feat_Veggies": 1.0,
"feat_HvyAlcoholConsump": 0.0,
"feat_AnyHealthcare": 1.0,
"feat_NoDocbcCost": 0.0,
"feat_GenHlth": 2.0,
"feat_MentHlth": 1.0,
"feat_PhysHlth": 0.0,
"feat_DiffWalk": 0.0,
"feat_Sex": 1.0,
"feat_Age": 10.0,
"feat_Education": 6.0,
"feat_Income": 5.0
}
]
```
### Dataset Fields
The dataset has the following fields (also called "features"):
```json
{
"target": "ClassLabel(num_classes=2, names=['0.0', '1.0'], id=None)",
"feat_HighBP": "Value(dtype='float64', id=None)",
"feat_HighChol": "Value(dtype='float64', id=None)",
"feat_CholCheck": "Value(dtype='float64', id=None)",
"feat_BMI": "Value(dtype='float64', id=None)",
"feat_Smoker": "Value(dtype='float64', id=None)",
"feat_Stroke": "Value(dtype='float64', id=None)",
"feat_HeartDiseaseorAttack": "Value(dtype='float64', id=None)",
"feat_PhysActivity": "Value(dtype='float64', id=None)",
"feat_Fruits": "Value(dtype='float64', id=None)",
"feat_Veggies": "Value(dtype='float64', id=None)",
"feat_HvyAlcoholConsump": "Value(dtype='float64', id=None)",
"feat_AnyHealthcare": "Value(dtype='float64', id=None)",
"feat_NoDocbcCost": "Value(dtype='float64', id=None)",
"feat_GenHlth": "Value(dtype='float64', id=None)",
"feat_MentHlth": "Value(dtype='float64', id=None)",
"feat_PhysHlth": "Value(dtype='float64', id=None)",
"feat_DiffWalk": "Value(dtype='float64', id=None)",
"feat_Sex": "Value(dtype='float64', id=None)",
"feat_Age": "Value(dtype='float64', id=None)",
"feat_Education": "Value(dtype='float64', id=None)",
"feat_Income": "Value(dtype='float64', id=None)"
}
```
### Dataset Splits
This dataset is split into a train and validation split. The split sizes are as follow:
| Split name | Num samples |
| ------------ | ------------------- |
| train | 56552 |
| valid | 14140 |
|