File size: 5,199 Bytes
afd1b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a07682
afd1b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
annotations_creators:
- expert-generated
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
- expert-generated
languages:
- en
- en-GB
- en-US
- en-AU
- fr
- it
- es
- pt
- de
- nl
- ru
- pl
- cs
- ko
- zh
licenses:
- cc-by-4.0
multilinguality:
- multilingual
pretty_name: 'MInDS-14'
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
- speech-processing
task_ids:
- speech-recognition
---

# MInDS-14

## Dataset Description

- **Fine-Tuning script:** [pytorch/audio-classification](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification)
- **Paper:** [Multilingual and Cross-Lingual Intent Detection from Spoken Data](https://arxiv.org/abs/2104.08524)
- **Total amount of disk used:** ca. 500 MB 

MINDS-14 is training and evaluation resource for intent detection task with spoken data. It covers 14 
intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties.

## Example

MInDS-14 can be downloaded and used as follows:

```py
from datasets import load_dataset

minds_14 = load_dataset("PolyAI/minds14", "fr-FR") # for French
# to download all data for multi-lingual fine-tuning uncomment following line
# minds_14 = load_dataset("PolyAI/all", "all")

# see structure
print(minds_14)

# load audio sample on the fly
audio_input = minds_14["train"][0]["audio"]  # first decoded audio sample
intent_class = minds_14["train"][0]["intent_class"]  # first transcription
intent = minds_14["train"].features["intent_class"].names[intent_class]

# use audio_input and language_class to fine-tune your model for audio classification
```

## Dataset Structure

We show detailed information the example configurations `fr-FR` of the dataset.
All other configurations have the same structure.

### Data Instances

**fr-FR**

- Size of downloaded dataset files: 471 MB
- Size of the generated dataset: 300 KB
- Total amount of disk used: 471 MB


An example of a datainstance of the config `fr-FR` looks as follows:

```
{
    "path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
    "audio": {
        "path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
        "array": array(
            [0.0, 0.0, 0.0, ..., 0.0, 0.00048828, -0.00024414], dtype=float32
        ),
        "sampling_rate": 8000,
    },
    "transcription": "je souhaite changer mon adresse",
    "english_transcription": "I want to change my address",
    "intent_class": 1,
    "lang_id": 6,
}
```

### Data Fields
The data fields are the same among all splits.

- **path** (str): Path to the audio file
- **audio** (dict): Audio object including loaded audio array, sampling rate and path ot audio
- **transcription** (str): Transcription of the audio file
- **english_transcription** (str): English transcription of the audio file
- **intent_class** (int): Class id of intent
- **lang_id** (int): Id of language

### Data Splits
Every config only has the `"train"` split containing of *ca.* 600 examples.

## Dataset Creation

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

All datasets are licensed under the [Creative Commons license (CC-BY)](https://creativecommons.org/licenses/).

### Citation Information

```
@article{DBLP:journals/corr/abs-2104-08524,
  author    = {Daniela Gerz and
               Pei{-}Hao Su and
               Razvan Kusztos and
               Avishek Mondal and
               Michal Lis and
               Eshan Singhal and
               Nikola Mrksic and
               Tsung{-}Hsien Wen and
               Ivan Vulic},
  title     = {Multilingual and Cross-Lingual Intent Detection from Spoken Data},
  journal   = {CoRR},
  volume    = {abs/2104.08524},
  year      = {2021},
  url       = {https://arxiv.org/abs/2104.08524},
  eprinttype = {arXiv},
  eprint    = {2104.08524},
  timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-08524.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset