patrickvonplaten commited on
Commit
a0ee25d
1 Parent(s): 0349b76

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -338
README.md CHANGED
@@ -40,245 +40,23 @@ task_ids:
40
 
41
  ## Dataset Description
42
 
43
- - **Fine-Tuning script:** [research-projects/xtreme-s](https://github.com/huggingface/transformers/tree/master/examples/research_projects/xtreme-s)
44
- - **Paper:** [XTREME-S: Evaluating Cross-lingual Speech Representations](https://arxiv.org/abs/2203.10752)
45
- - **Leaderboard:** [TODO(PVP)]()
46
- - **FLEURS amount of disk used:** 350 GB
47
- - **Multilingual Librispeech amount of disk used:** 2700 GB
48
- - **Voxpopuli amount of disk used:** 400 GB
49
- - **Covost2 amount of disk used:** 70 GB
50
- - **Minds14 amount of disk used:** 5 GB
51
- - **Total amount of disk used:** ca. 3500 GB
52
 
53
- The Cross-lingual TRansfer Evaluation of Multilingual Encoders for Speech (XTREME-S) benchmark is a benchmark designed to evaluate speech representations across languages, tasks, domains and data regimes. It covers 102 languages from 10+ language families, 3 different domains and 4 task families: speech recognition, translation, classification and retrieval.
 
54
 
55
- ***TLDR; XTREME-S is the first speech benchmark that is both diverse, fully accessible, and reproducible. All datasets can be downloaded with a single line of code.
56
- An easy-to-use and flexible fine-tuning script is provided and actively maintained.***
57
 
58
- XTREME-S covers speech recognition with Fleurs, Multilingual LibriSpeech (MLS) and VoxPopuli, speech translation with CoVoST-2, speech classification with LangID (Fleurs) and intent classification (MInds-14) and finally speech(-text) retrieval with Fleurs. Each of the tasks covers a subset of the 102 languages included in XTREME-S, from various regions:
59
-
60
- - **Western Europe**: *Asturian, Bosnian, Catalan, Croatian, Danish, Dutch, English, Finnish, French, Galician, German, Greek, Hungarian, Icelandic, Irish, Italian, Kabuverdianu, Luxembourgish, Maltese, Norwegian, Occitan, Portuguese, Spanish, Swedish, Welsh*
61
- - **Eastern Europe**: *Armenian, Belarusian, Bulgarian, Czech, Estonian, Georgian, Latvian, Lithuanian, Macedonian, Polish, Romanian, Russian, Serbian, Slovak, Slovenian, Ukrainian*
62
- - **Central-Asia/Middle-East/North-Africa**: *Arabic, Azerbaijani, Hebrew, Kazakh, Kyrgyz, Mongolian, Pashto, Persian, Sorani-Kurdish, Tajik, Turkish, Uzbek*
63
- - **Sub-Saharan Africa**: *Afrikaans, Amharic, Fula, Ganda, Hausa, Igbo, Kamba, Lingala, Luo, Northern-Sotho, Nyanja, Oromo, Shona, Somali, Swahili, Umbundu, Wolof, Xhosa, Yoruba, Zulu*
64
- - **South-Asia**: *Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Nepali, Oriya, Punjabi, Sindhi, Tamil, Telugu, Urdu*
65
- - **South-East Asia**: *Burmese, Cebuano, Filipino, Indonesian, Javanese, Khmer, Lao, Malay, Maori, Thai, Vietnamese*
66
- - **CJK languages**: *Cantonese and Mandarin Chinese, Japanese, Korean*
67
-
68
-
69
- ## Design principles
70
-
71
- ### Diversity
72
-
73
- XTREME-S aims for task, domain and language
74
- diversity. Tasks should be diverse and cover several domains to
75
- provide a reliable evaluation of model generalization and
76
- robustness to noisy naturally-occurring speech in different
77
- environments. Languages should be diverse to ensure that
78
- models can adapt to a wide range of linguistic and phonological
79
- phenomena.
80
-
81
- ### Accessibility
82
-
83
- The sub-dataset for each task can be downloaded
84
- with a **single line of code** as shown in [Supported Tasks](#supported-tasks).
85
- Each task is available under a permissive license that allows the use and redistribution
86
- of the data for research purposes. Tasks have been selected based on their usage by
87
- pre-existing multilingual pre-trained models, for simplicity.
88
-
89
- ### Reproducibility
90
-
91
- We produce fully **open-sourced, maintained and easy-to-use** fine-tuning scripts
92
- for each task as shown under [Fine-tuning Example](#fine-tuning-and-evaluation-example).
93
- XTREME-S encourages submissions that leverage publicly available speech and text datasets. Users should detail which data they use.
94
- In general, we encourage settings that can be reproduced by the community, but also encourage the exploration of new frontiers for speech representation learning.
95
-
96
- ## Fine-tuning and Evaluation Example
97
-
98
- We provide a fine-tuning script under [**research-projects/xtreme-s**](https://github.com/huggingface/transformers/tree/master/examples/research_projects/xtreme-s).
99
- The fine-tuning script is written in PyTorch and allows one to fine-tune and evaluate any [Hugging Face model](https://huggingface.co/models) on XTREME-S.
100
- The example script is actively maintained by [@anton-l](https://github.com/anton-l) and [@patrickvonplaten](https://github.com/patrickvonplaten). Feel free
101
- to reach out via issues or pull requests on GitHub if you have any questions.
102
-
103
- ## Leaderboards
104
-
105
- The leaderboard for the XTREME-S benchmark can be found at [this address (TODO(PVP))]().
106
-
107
- ## Supported Tasks
108
-
109
- Note that the suppoprted tasks are focused particularly on linguistic aspect of speech,
110
- while nonlinguistic/paralinguistic aspects of speech relevant to e.g. speech synthesis or voice conversion are **not** evaluated.
111
-
112
- <p align="center">
113
- <img src="https://github.com/patrickvonplaten/scientific_images/raw/master/xtreme_s.png" alt="Datasets used in XTREME"/>
114
- </p>
115
-
116
- ### 1. Speech Recognition (ASR)
117
-
118
- We include three speech recognition datasets: FLEURS-ASR, MLS and VoxPopuli (optionally BABEL). Multilingual fine-tuning is used for these three datasets.
119
-
120
- #### FLEURS-ASR
121
-
122
- *FLEURS-ASR* is a new dataset that provides n-way parallel speech data in 102 languages with transcriptions.
123
-
124
- TODO(PVP) - need more information here
125
-
126
- ```py
127
- from datasets import load_dataset
128
-
129
- fleurs_asr = load_dataset("google/xtreme_s", "fleurs.af_za") # for Afrikaans
130
- # to download all data for multi-lingual fine-tuning uncomment following line
131
- # fleurs_asr = load_dataset("google/xtreme_s", "fleurs.all")
132
-
133
- # see structure
134
- print(fleurs_asr)
135
-
136
- # load audio sample on the fly
137
- audio_input = fleurs_asr["train"][0]["audio"] # first decoded audio sample
138
- transcription = fleurs_asr["train"][0]["transcription"] # first transcription
139
- # use `audio_input` and `transcription` to fine-tune your model for ASR
140
-
141
- # for analyses see language groups
142
- all_language_groups = fleurs_asr["train"].features["lang_group_id"].names
143
- lang_group_id = fleurs_asr["train"][0]["lang_group_id"]
144
-
145
- all_language_groups[lang_group_id]
146
- ```
147
-
148
- #### Multilingual LibriSpeech (MLS)
149
-
150
- *MLS* is a large multilingual corpus derived from read audiobooks from LibriVox and consists of 8 languages. For this challenge the training data is limited to 10-hours splits.
151
-
152
- ```py
153
- from datasets import load_dataset
154
-
155
- mls = load_dataset("google/xtreme_s", "mls.pl") # for Polish
156
- # to download all data for multi-lingual fine-tuning uncomment following line
157
- # mls = load_dataset("google/xtreme_s", "mls.all")
158
-
159
- # see structure
160
- print(mls)
161
-
162
- # load audio sample on the fly
163
- audio_input = mls["train"][0]["audio"] # first decoded audio sample
164
- transcription = mls["train"][0]["transcription"] # first transcription
165
-
166
- # use `audio_input` and `transcription` to fine-tune your model for ASR
167
- ```
168
-
169
- #### VoxPopuli
170
-
171
- *VoxPopuli* is a large-scale multilingual speech corpus for representation learning and semi-supervised learning, from which we use the speech recognition dataset. The raw data is collected from 2009-2020 European Parliament event recordings. We acknowledge the European Parliament for creating and sharing these materials.
172
-
173
- **VoxPopuli has to download the whole dataset 100GB since languages
174
- are entangled into each other - maybe not worth testing here due to the size**
175
-
176
- ```py
177
- from datasets import load_dataset
178
-
179
- voxpopuli = load_dataset("google/xtreme_s", "voxpopuli.ro") # for Romanian
180
- # to download all data for multi-lingual fine-tuning uncomment following line
181
- # voxpopuli = load_dataset("google/xtreme_s", "voxpopuli.all")
182
-
183
- # see structure
184
- print(voxpopuli)
185
-
186
- # load audio sample on the fly
187
- audio_input = voxpopuli["train"][0]["audio"] # first decoded audio sample
188
- transcription = voxpopuli["train"][0]["transcription"] # first transcription
189
-
190
- # use `audio_input` and `transcription` to fine-tune your model for ASR
191
- ```
192
-
193
- #### (Optionally) BABEL
194
-
195
- *BABEL* from IARPA is a conversational speech recognition dataset in low-resource languages. First, download LDC2016S06, LDC2016S12, LDC2017S08, LDC2017S05 and LDC2016S13. BABEL is the only dataset in our benchmark who is less easily accessible, so you will need to sign in to get access to it on LDC. Although not officially part of the XTREME-S ASR datasets, BABEL is often used for evaluating speech representations on a difficult domain (phone conversations).
196
-
197
- ```py
198
- from datasets import load_dataset
199
-
200
- babel = load_dataset("google/xtreme_s", "babel.as")
201
- ```
202
-
203
- **The above command is expected to fail with a nice error message,
204
- explaining how to download BABEL**
205
-
206
- The following should work:
207
-
208
- ```py
209
- from datasets import load_dataset
210
- babel = load_dataset("google/xtreme_s", "babel.as", data_dir="/path/to/IARPA_BABEL_OP1_102_LDC2016S06.zip")
211
-
212
- # see structure
213
- print(babel)
214
-
215
- # load audio sample on the fly
216
- audio_input = babel["train"][0]["audio"] # first decoded audio sample
217
- transcription = babel["train"][0]["transcription"] # first transcription
218
- # use `audio_input` and `transcription` to fine-tune your model for ASR
219
- ```
220
-
221
- ### 2. Speech Translation (ST)
222
-
223
- We include the CoVoST-2 dataset for automatic speech translation.
224
-
225
- #### CoVoST-2
226
-
227
- The *CoVoST-2* benchmark has become a commonly used dataset for evaluating automatic speech translation. It covers language pairs from English into 15 languages, as well as 21 languages into English. We use only the "X->En" direction to evaluate cross-lingual representations. The amount of supervision varies greatly in this setting, from one hour for Japanese->English to 180 hours for French->English. This makes pretraining particularly useful to enable such few-shot learning. We enforce multiligual fine-tuning for simplicity. Results are splitted in high/med/low-resource language pairs as explained in the [paper (TODO(PVP))].
228
 
229
  ```py
230
  from datasets import load_dataset
231
 
232
- covost_2 = load_dataset("google/xtreme_s", "covost2.id.en") # for Indonesian to English
233
  # to download all data for multi-lingual fine-tuning uncomment following line
234
- # covost_2 = load_dataset("google/xtreme_s", "covost2.all")
235
-
236
- # see structure
237
- print(covost_2)
238
-
239
- # load audio sample on the fly
240
- audio_input = covost_2["train"][0]["audio"] # first decoded audio sample
241
- transcription = covost_2["train"][0]["transcription"] # first transcription
242
-
243
- translation = covost_2["train"][0]["translation"] # first translation
244
-
245
- # use audio_input and translation to fine-tune your model for AST
246
- ```
247
-
248
- ### 3. Speech Classification
249
-
250
- We include two multilingual speech classification datasets: FLEURS-LangID and Minds-14.
251
-
252
- #### Language Identification - FLEURS-LangID
253
-
254
- LangID can often be a domain classification, but in the case of FLEURS-LangID, recordings are done in a similar setting across languages and the utterances correspond to n-way parallel sentences, in the exact same domain, making this task particularly relevant for evaluating LangID. The setting is simple, FLEURS-LangID is splitted in train/valid/test for each language. We simply create a single train/valid/test for LangID by merging all.
255
-
256
- ```py
257
- from datasets import load_dataset
258
-
259
- fleurs_langID = load_dataset("google/xtreme_s", "fleurs.all") # to download all data
260
-
261
- # see structure
262
- print(fleurs_langID)
263
-
264
- # load audio sample on the fly
265
- audio_input = fleurs_langID["train"][0]["audio"] # first decoded audio sample
266
- language_class = fleurs_langID["train"][0]["lang_id"] # first id class
267
- language = fleurs_langID["train"].features["lang_id"].names[language_class]
268
-
269
- # use audio_input and language_class to fine-tune your model for audio classification
270
- ```
271
-
272
- #### Intent classification - Minds-14
273
-
274
- Minds-14 is an intent classification made from e-banking speech datasets in 14 languages, with 14 intent labels. We impose a single multilingual fine-tuning to increase the size of the train and test sets and reduce the variance associated with the small size of the dataset per language.
275
-
276
- ```py
277
- from datasets import load_dataset
278
-
279
- minds_14 = load_dataset("google/xtreme_s", "minds14.fr-FR") # for French
280
- # to download all data for multi-lingual fine-tuning uncomment following line
281
- # minds_14 = load_dataset("google/xtreme_s", "minds14.all")
282
 
283
  # see structure
284
  print(minds_14)
@@ -289,65 +67,28 @@ intent_class = minds_14["train"][0]["intent_class"] # first transcription
289
  intent = minds_14["train"].features["intent_class"].names[intent_class]
290
 
291
  # use audio_input and language_class to fine-tune your model for audio classification
292
- ```
293
-
294
- ### 4. (Optionally) Speech Retrieval
295
-
296
- We include one speech retrieval dataset: FLEURS-Retrieval.
297
-
298
- TODO(Patrick)
299
-
300
- #### FLEURS-Retrieval
301
-
302
- FLEURS-Retrieval provides n-way parallel speech and text data. Similar to how XTREME for text leverages Tatoeba to evaluate bitext mining a.k.a sentence translation retrieval, we use FLEURS-Retrieval to evaluate the quality of fixed-size representations of speech utterances. Our goal is to incentivize the creation of fixed-size speech encoder for speech retrieval. The system has to retrieve the English "key" utterance corresponding to the speech translation of "queries" in 15 languages. Results have to be reported on the test sets of FLEURS-Retrieval whose utterances are used as queries (and keys for English). We augment the English keys with a large number of utterances to make the task more difficult.
303
-
304
- ```py
305
- from datasets import load_dataset
306
-
307
- fleurs_retrieval = load_dataset("google/xtreme_s", "fleurs.af_za") # for Afrikaans
308
- # to download all data for multi-lingual fine-tuning uncomment following line
309
- # fleurs_retrieval = load_dataset("google/xtreme_s", "fleurs.all")
310
-
311
- # see structure
312
- print(fleurs_retrieval)
313
-
314
- # load audio sample on the fly
315
- audio_input = fleurs_retrieval["train"][0]["audio"] # decoded audio sample
316
- text_sample_pos = fleurs_retrieval["train"][0]["transcription"] # positive text sample
317
- text_sample_neg = fleurs_retrieval["train"][1:20]["transcription"] # negative text samples
318
-
319
- # use `audio_input`, `text_sample_pos`, and `text_sample_neg` to fine-tune your model for retrieval
320
- ```
321
-
322
- Users can leverage the training (and dev) sets of FLEURS-Retrieval with a ranking loss to build better cross-lingual fixed-size representations of speech.
323
 
324
  ## Dataset Structure
325
 
326
- The XTREME-S benchmark is composed of the following datasets:
327
-
328
- - [FLEURS: TODO(PVP) link]
329
- - [Multilingual Librispeech (MLS)](https://huggingface.co/datasets/facebook/multilingual_librispeech#dataset-structure)
330
- Note that for MLS, XTREME-S uses `path` instead of `file` and `transcription` instead of `text`.
331
- - [Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli#dataset-structure)
332
- - [Minds14](https://huggingface.co/datasets/polyai/minds14#dataset-structure)
333
- - [Covost2](https://huggingface.co/datasets/covost2#dataset-structure)
334
- Note that for Covost2, XTREME-S uses `path` instead of `file` and `transcription` instead of `sentence`.
335
- - [BABEL](https://huggingface.co/datasets/ldc/iarpa_babel#dataset-structure)
336
-
337
- Please click on the link of the dataset cards to get more information about its dataset structure.
 
 
 
 
338
 
339
  ## Dataset Creation
340
 
341
- The XTREME-S benchmark is composed of the following datasets:
342
-
343
- - [FLEURS: TODO(PVP) link]
344
- - [Multilingual Librispeech (MLS)](https://huggingface.co/datasets/facebook/multilingual_librispeech#dataset-creation)
345
- - [Voxpopuli](https://huggingface.co/datasets/facebook/voxpopuli#dataset-creation)
346
- - [Minds14](https://huggingface.co/datasets/polyai/minds14#dataset-creation)
347
- - [Covost2](https://huggingface.co/datasets/covost2#dataset-creation)
348
- - [BABEL](https://huggingface.co/datasets/ldc/iarpa_babel#dataset-creation)
349
-
350
- Please visit the corresponding dataset cards to get more information about the source data.
351
 
352
  ## Considerations for Using the Data
353
 
@@ -375,66 +116,30 @@ All datasets are licensed under the [Creative Commons license (CC-BY)](https://c
375
 
376
  ### Citation Information
377
 
378
- #### XTREME-S
379
- ```
380
- @article{conneau2022xtreme,
381
- title={XTREME-S: Evaluating Cross-lingual Speech Representations},
382
- author={Conneau, Alexis and Bapna, Ankur and Zhang, Yu and Ma, Min and von Platen, Patrick and Lozhkov, Anton and Cherry, Colin and Jia, Ye and Rivera, Clara and Kale, Mihir and others},
383
- journal={arXiv preprint arXiv:2203.10752},
384
- year={2022}
385
- }
386
- ```
387
-
388
- #### MLS
389
- ```
390
- @article{Pratap2020MLSAL,
391
- title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
392
- author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
393
- journal={ArXiv},
394
- year={2020},
395
- volume={abs/2012.03411}
396
- }
397
- ```
398
-
399
- #### VoxPopuli
400
- ```
401
- @article{wang2021voxpopuli,
402
- title={Voxpopuli: A large-scale multilingual speech corpus for representation learning, semi-supervised learning and interpretation},
403
- author={Wang, Changhan and Riviere, Morgane and Lee, Ann and Wu, Anne and Talnikar, Chaitanya and Haziza, Daniel and Williamson, Mary and Pino, Juan and Dupoux, Emmanuel},
404
- journal={arXiv preprint arXiv:2101.00390},
405
- year={2021}
406
- }
407
- ```
408
-
409
- #### CoVoST 2
410
  ```
411
- @article{DBLP:journals/corr/abs-2007-10310,
412
- author = {Changhan Wang and
413
- Anne Wu and
414
- Juan Miguel Pino},
415
- title = {CoVoST 2: {A} Massively Multilingual Speech-to-Text Translation Corpus},
 
 
 
 
 
 
416
  journal = {CoRR},
417
- volume = {abs/2007.10310},
418
- year = {2020},
419
- url = {https://arxiv.org/abs/2007.10310},
420
  eprinttype = {arXiv},
421
- eprint = {2007.10310},
422
- timestamp = {Thu, 12 Aug 2021 15:37:06 +0200},
423
- biburl = {https://dblp.org/rec/journals/corr/abs-2007-10310.bib},
424
  bibsource = {dblp computer science bibliography, https://dblp.org}
425
  }
426
  ```
427
 
428
- #### Minds14
429
- ```
430
- @article{gerz2021multilingual,
431
- title={Multilingual and cross-lingual intent detection from spoken data},
432
- author={Gerz, Daniela and Su, Pei-Hao and Kusztos, Razvan and Mondal, Avishek and Lis, Micha{\l} and Singhal, Eshan and Mrk{\v{s}}i{\'c}, Nikola and Wen, Tsung-Hsien and Vuli{\'c}, Ivan},
433
- journal={arXiv preprint arXiv:2104.08524},
434
- year={2021}
435
- }
436
- ```
437
-
438
  ### Contributions
439
 
440
- Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@anton-l](https://github.com/anton-l), [@aconneau](https://github.com/aconneau) for adding this dataset
 
40
 
41
  ## Dataset Description
42
 
43
+ - **Fine-Tuning script:** [research-projects/xtreme-s](https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification)
44
+ - **Paper:** [Multilingual and Cross-Lingual Intent Detection from Spoken Data](https://arxiv.org/abs/2104.08524)
45
+ - **Total amount of disk used:** ca. 5 GB
 
 
 
 
 
 
46
 
47
+ MINDS-14 is training and evaluation resource for intent detection task with spoken data. It covers 14
48
+ intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties.
49
 
50
+ ## Example
 
51
 
52
+ MInDS-14 can be downloaded and used as follows:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  ```py
55
  from datasets import load_dataset
56
 
57
+ minds_14 = load_dataset("PolyAI/minds14", "fr-FR") # for French
58
  # to download all data for multi-lingual fine-tuning uncomment following line
59
+ # minds_14 = load_dataset("PolyAI/all", "all")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  # see structure
62
  print(minds_14)
 
67
  intent = minds_14["train"].features["intent_class"].names[intent_class]
68
 
69
  # use audio_input and language_class to fine-tune your model for audio classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ## Dataset Structure
72
 
73
+ An example of a datainstance of the config `fr-FR` looks as follows:
74
+
75
+ {
76
+ "path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
77
+ "audio": {
78
+ "path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
79
+ "array": array(
80
+ [0.0, 0.0, 0.0, ..., 0.0, 0.00048828, -0.00024414], dtype=float32
81
+ ),
82
+ "sampling_rate": 8000,
83
+ },
84
+ "transcription": "je souhaite changer mon adresse",
85
+ "english_transcription": "I want to change my address",
86
+ "intent_class": 1,
87
+ "lang_id": 6,
88
+ }
89
 
90
  ## Dataset Creation
91
 
 
 
 
 
 
 
 
 
 
 
92
 
93
  ## Considerations for Using the Data
94
 
 
116
 
117
  ### Citation Information
118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  ```
120
+ @article{DBLP:journals/corr/abs-2104-08524,
121
+ author = {Daniela Gerz and
122
+ Pei{-}Hao Su and
123
+ Razvan Kusztos and
124
+ Avishek Mondal and
125
+ Michal Lis and
126
+ Eshan Singhal and
127
+ Nikola Mrksic and
128
+ Tsung{-}Hsien Wen and
129
+ Ivan Vulic},
130
+ title = {Multilingual and Cross-Lingual Intent Detection from Spoken Data},
131
  journal = {CoRR},
132
+ volume = {abs/2104.08524},
133
+ year = {2021},
134
+ url = {https://arxiv.org/abs/2104.08524},
135
  eprinttype = {arXiv},
136
+ eprint = {2104.08524},
137
+ timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
138
+ biburl = {https://dblp.org/rec/journals/corr/abs-2104-08524.bib},
139
  bibsource = {dblp computer science bibliography, https://dblp.org}
140
  }
141
  ```
142
 
 
 
 
 
 
 
 
 
 
 
143
  ### Contributions
144
 
145
+ Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset