File size: 19,805 Bytes
9654d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670c546
 
9654d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5693d9f
9654d7a
fd6f4bd
 
 
 
 
 
 
 
 
9654d7a
fd6f4bd
9654d7a
 
a52fe6e
9654d7a
6c413d4
fd6f4bd
 
 
9654d7a
fd6f4bd
9654d7a
 
5693d9f
9654d7a
fd6f4bd
 
 
 
 
 
 
 
9654d7a
fd6f4bd
9654d7a
 
 
 
 
 
 
 
 
 
8de7527
 
 
9654d7a
8de7527
 
 
 
 
 
 
 
9654d7a
30420d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9654d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c76e92
9654d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c21bb
8de7527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
950b4cb
8de7527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9654d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8de7527
42d9a52
9654d7a
 
 
 
 
 
 
 
 
8de7527
002fe95
8de7527
 
42d9a52
8de7527
9654d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and Arjun Barrett.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""VoxCeleb audio-visual human speech dataset."""

import json
import os
from getpass import getpass
from hashlib import sha256
from itertools import repeat
from multiprocessing import Manager, Pool, Process
from pathlib import Path
from shutil import copyfileobj

import pandas as pd
import requests
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union

import datasets
import urllib3

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

_CITATION = """\
@Article{Nagrani19,
    author = "Arsha Nagrani and Joon~Son Chung and Weidi Xie and Andrew Zisserman",
    title = "Voxceleb: Large-scale speaker verification in the wild",
    journal = "Computer Science and Language",
    year = "2019",
    publisher = "Elsevier",
}

@InProceedings{Chung18b,
    author = "Chung, J.~S. and Nagrani, A. and Zisserman, A.",
    title = "VoxCeleb2: Deep Speaker Recognition",
    booktitle = "INTERSPEECH",
    year = "2018",
}

@InProceedings{Nagrani17,
    author = "Nagrani, A. and Chung, J.~S. and Zisserman, A.",
    title = "VoxCeleb: a large-scale speaker identification dataset",
    booktitle = "INTERSPEECH",
    year = "2017",
}
"""

_DESCRIPTION = """\
VoxCeleb is an audio-visual dataset consisting of short clips of human speech, extracted from interview videos uploaded to YouTube
"""

_URL = "https://mm.kaist.ac.kr/datasets/voxceleb"

_URLS = {
    "video": {
        "placeholder": "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partaa",
        "dev": (
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partaa",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partab",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partac",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partad",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partae",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partaf",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partag",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partah",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_mp4_partai",
        ),
        "test": "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_test_mp4.zip",
    },
    "audio1": {
        "placeholder": "hf://datasets/ProgramComputer/voxceleb/vox1/vox1_dev_wav_partaa",
        "dev": (
            "hf://datasets/ProgramComputer/voxceleb/vox1/vox1_dev_wav_partaa",
            "hf://datasets/ProgramComputer/voxceleb/vox1/vox1_dev_wav_partab",
            "hf://datasets/ProgramComputer/voxceleb/vox1/vox1_dev_wav_partac",
            "hf://datasets/ProgramComputer/voxceleb/vox1/vox1_dev_wav_partad",
        ),
        "test": "hf://datasets/ProgramComputer/voxceleb/vox1/vox1_test_wav.zip",
    },
    "audio2": {
        "placeholder": "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partaa",
        "dev": (
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partaa",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partab",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partac",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partad",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partae",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partaf",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partag",
            "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_dev_aac_partah",
        ),
        "test": "hf://datasets/ProgramComputer/voxceleb/vox2/vox2_test_aac.zip",
    },
}

_DATASET_IDS = {"video": "vox2", "audio1": "vox1", "audio2": "vox2"}

_PLACEHOLDER_MAPS = dict(
    value
    for urls in _URLS.values()
    for value in ((urls["placeholder"], urls["dev"]), (urls["test"], (urls["test"],)))
)
class NestedDataStructure:
    def __init__(self, data=None):
        self.data = data if data is not None else []

    def flatten(self, data=None):
        data = data if data is not None else self.data
        if isinstance(data, dict):
            return self.flatten(list(data.values()))
        elif isinstance(data, (list, tuple)):
            return [flattened for item in data for flattened in self.flatten(item)]
        else:
            return [data]

def map_nested(
    function: Callable[[Any], Any],
    data_struct: Any,
    dict_only: bool = False,
    map_list: bool = True,
    map_tuple: bool = False,
    map_numpy: bool = False,
    num_proc: Optional[int] = None,
    parallel_min_length: int = 2,
    types: Optional[tuple] = None,
    disable_tqdm: bool = True,
    desc: Optional[str] = None,
) -> Any:
    """Apply a function recursively to each element of a nested data struct.

    Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to
    `parallel_min_length`.

    <Changed version="2.5.0">

    Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``.

    Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and
    multiprocessing is used.

    </Changed>

    Args:
        function (`Callable`): Function to be applied to `data_struct`.
        data_struct (`Any`): Data structure to apply `function` to.
        dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in
            `data_struct`.
        map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict`
            values).
        map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides
            `dict` values).
        map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides
            `dict` values).
        num_proc (`int`, *optional*): Number of processes.
        parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel
            processing.
            <Added version="2.5.0"/>
        types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their
            elements.
        disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar.
        desc (`str`, *optional*): Prefix for the tqdm progressbar.

    Returns:
        `Any`
    """
    if types is None:
        types = []
        if not dict_only:
            if map_list:
                types.append(list)
            if map_tuple:
                types.append(tuple)
            if map_numpy:
                types.append(np.ndarray)
        types = tuple(types)

    # Singleton
    if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
        return function(data_struct)

    disable_tqdm = disable_tqdm or not logging.is_progress_bar_enabled()
    iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct

    if num_proc is None:
        num_proc = 1
    if num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length:
        mapped = [
            _single_map_nested((function, obj, types, None, True, None))
            for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
        ]
    else:
        with warnings.catch_warnings():
            warnings.filterwarnings(
                "ignore",
                message=".* is experimental and might be subject to breaking changes in the future\\.$",
                category=UserWarning,
            )
            mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested)

    if isinstance(data_struct, dict):
        return dict(zip(data_struct.keys(), mapped))
    else:
        if isinstance(data_struct, list):
            return mapped
        elif isinstance(data_struct, tuple):
            return tuple(mapped)
        else:
            return np.array(mapped)
            
def _mp_download(
    url,
    tmp_path,
    resume_pos,
    length,
    queue,
):
    if length == resume_pos:
        return
    with open(tmp_path, "ab" if resume_pos else "wb") as tmp:
        headers = {}
        if resume_pos != 0:
            headers["Range"] = f"bytes={resume_pos}-"
        response = requests.get(
            url, headers=headers, stream=True
        )
        if response.status_code >= 200 and response.status_code < 300:
            for chunk in response.iter_content(chunk_size=65536):
                queue.put(len(chunk))
                tmp.write(chunk)
        else:
            raise ConnectionError("failed to fetch dataset")


class Test(datasets.GeneratorBasedBuilder):
    """VoxCeleb is an unlabled dataset consisting of short clips of human speech from interviews on YouTube"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="video", version=VERSION, description="Video clips of human speech"
        ),
        datasets.BuilderConfig(
            name="audio", version=VERSION, description="Audio clips of human speech"
        ),
        datasets.BuilderConfig(
            name="audio1",
            version=datasets.Version("1.0.0"),
            description="Audio clips of human speech from VoxCeleb1",
        ),
        datasets.BuilderConfig(
            name="audio2",
            version=datasets.Version("2.0.0"),
            description="Audio clips of human speech from VoxCeleb2",
        ),
    ]

    def _info(self):
        features = {
            "file": datasets.Value("string"),
            "file_format": datasets.Value("string"),
            "dataset_id": datasets.Value("string"),
            "speaker_id": datasets.Value("string"),
            "speaker_gender": datasets.Value("string"),
            "video_id": datasets.Value("string"),
            "clip_index": datasets.Value("int32"),
        }
        if self.config.name == "audio1":
            features["speaker_name"] = datasets.Value("string")
            features["speaker_nationality"] = datasets.Value("string")
        if self.config.name.startswith("audio"):
            features["audio"] = datasets.Audio(sampling_rate=16000)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            homepage=_URL,
            supervised_keys=datasets.info.SupervisedKeysData("file", "speaker_id"),
            features=datasets.Features(features),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        targets = (
            ["audio1", "audio2"] if self.config.name == "audio" else [self.config.name]
        )
        def self_download_custom(url_or_urls, custom_download):
                nonlocal dl_manager
                """
                Download given urls(s) by calling `custom_download`.
        
                Args:
                    url_or_urls (`str` or `list` or `dict`):
                        URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`.
                    custom_download (`Callable[src_url, dst_path]`):
                        The source URL and destination path. For example
                        `tf.io.gfile.copy`, that lets you download from  Google storage.
        
                Returns:
                    downloaded_path(s): `str`, The downloaded paths matching the given input
                        `url_or_urls`.
        
                Example:
        
                ```py
                >>> downloaded_files = dl_manager.download_custom('s3://my-bucket/data.zip', custom_download_for_my_private_bucket)
                ```
                """
                cache_dir = dl_manager.download_config.cache_dir #or config.DOWNLOADED_DATASETS_PATH
                max_retries = dl_manager.download_config.max_retries
        
                def url_to_downloaded_path(url):
                    return os.path.join(cache_dir, hash_url_to_filename(url))
        
                downloaded_path_or_paths = map_nested(
                    url_to_downloaded_path, url_or_urls, disable_tqdm=not is_progress_bar_enabled()
                )
                url_or_urls = NestedDataStructure(url_or_urls)
                downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths)
                for url, path in zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()):
                    try:
                        get_from_cache(
                            url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries
                        )
                        cached = True
                    except FileNotFoundError:
                        cached = False
                    if not cached or dl_manager.download_config.force_download:
                        custom_download(url, path)
                        get_from_cache(
                            url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries
                        )
                dl_manager._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
                return downloaded_path_or_paths.data        

        def download_custom(placeholder_url, path):
            nonlocal dl_manager
            sources = _PLACEHOLDER_MAPS[placeholder_url]
            tmp_paths = []
            lengths = []
            start_positions = []
            for url in sources:
                head = requests.head(url,timeout=5,stream=True,allow_redirects=True,verify=False)
                if head.status_code == 401:
                    raise ValueError("failed to authenticate with VoxCeleb host")
                if head.status_code < 200 or head.status_code >= 300:
                    raise ValueError("failed to fetch dataset")
                content_length = head.headers.get("Content-Length")
                if content_length is None:
                    raise ValueError("expected non-empty Content-Length")
                content_length = int(content_length)
                tmp_path = Path(path + "." + sha256(url.encode("utf-8")).hexdigest())
                tmp_paths.append(tmp_path)
                lengths.append(content_length)
                start_positions.append(
                    tmp_path.stat().st_size
                    if tmp_path.exists() and dl_manager.download_config.resume_download
                    else 0
                )

            def progress(q, cur, total):
                with datasets.utils.logging.tqdm(
                    unit="B",
                    unit_scale=True,
                    total=total,
                    initial=cur,
                    desc="Downloading",
                    disable=not datasets.utils.logging.is_progress_bar_enabled(),
                ) as progress:
                    while cur < total:
                        try:
                            added = q.get(timeout=1)
                            progress.update(added)
                            cur += added
                        except:
                            continue

            manager = Manager()
            q = manager.Queue()
            with Pool(len(sources)) as pool:
                proc = Process(
                    target=progress,
                    args=(q, sum(start_positions), sum(lengths)),
                    daemon=True,
                )
                proc.start()
                pool.starmap(
                    _mp_download,
                    zip(
                        sources,
                        tmp_paths,
                        start_positions,
                        lengths,
                        repeat(q),
                    ),
                )
                pool.close()
                proc.join()
            with open(path, "wb") as out:
                for tmp_path in tmp_paths:
                    with open(tmp_path, "rb") as tmp:
                        copyfileobj(tmp, out)
                    tmp_path.unlink()

        metadata = dl_manager.download(
            dict(
                (
                    target,
                    f"https://mm.kaist.ac.kr/datasets/voxceleb/meta/{_DATASET_IDS[target]}_meta.csv",
                )
                for target in targets
            )
        )

        mapped_paths = dl_manager.extract(self_download_custom(
            
                dict(
                    (
                        placeholder_key,
                        dict(
                            (target, _URLS[target][placeholder_key])
                            for target in targets
                        ),
                    )
                    for placeholder_key in ("placeholder", "test")
                ),
                download_custom,
            
            
        
        ))

        return [
            datasets.SplitGenerator(
                name="train",
                gen_kwargs={
                    "paths": mapped_paths["placeholder"],
                    "meta_paths": metadata,
                },
            ),
            datasets.SplitGenerator(
                name="test",
                gen_kwargs={
                    "paths": mapped_paths["test"],
                    "meta_paths": metadata,
                },
            ),
        ]

    def _generate_examples(self, paths, meta_paths):
        key = 0
        for conf in paths:
            dataset_id = "vox1" if conf == "audio1" else "vox2"
            meta = pd.read_csv(
                meta_paths[conf],
                sep="\t" if conf == "audio1" else " ,",
                index_col=0,
                engine="python",
            )
            dataset_path = next(Path(paths[conf]).iterdir())
            dataset_format = dataset_path.name
            for speaker_path in dataset_path.iterdir():
                speaker = speaker_path.name
                speaker_info = meta.loc[speaker]
                for video in speaker_path.iterdir():
                    video_id = video.name
                    for clip in video.iterdir():
                        clip_index = int(clip.stem)
                        info = {
                            "file": str(clip),
                            "file_format": dataset_format,
                            "dataset_id": dataset_id,
                            "speaker_id": speaker,
                            "speaker_gender": speaker_info["Gender"],
                            "video_id": video_id,
                            "clip_index": clip_index,
                        }
                        if dataset_id == "vox1":
                            info["speaker_name"] = speaker_info["VGGFace1 ID"]
                            info["speaker_nationality"] = speaker_info["Nationality"]
                        if conf.startswith("audio"):
                            info["audio"] = info["file"]
                        yield key, info
                        key += 1