ProgramComputer
commited on
Commit
•
1171a05
1
Parent(s):
b33af39
Delete vox_celeb.py
Browse files- vox_celeb.py +0 -343
vox_celeb.py
DELETED
@@ -1,343 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The HuggingFace Datasets Authors and Arjun Barrett.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""VoxCeleb audio-visual human speech dataset."""
|
18 |
-
|
19 |
-
import json
|
20 |
-
import os
|
21 |
-
from getpass import getpass
|
22 |
-
from hashlib import sha256
|
23 |
-
from itertools import repeat
|
24 |
-
from multiprocessing import Manager, Pool, Process
|
25 |
-
from pathlib import Path
|
26 |
-
from shutil import copyfileobj
|
27 |
-
|
28 |
-
import pandas as pd
|
29 |
-
import requests
|
30 |
-
|
31 |
-
import datasets
|
32 |
-
import urllib3
|
33 |
-
|
34 |
-
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
35 |
-
|
36 |
-
_CITATION = """\
|
37 |
-
@Article{Nagrani19,
|
38 |
-
author = "Arsha Nagrani and Joon~Son Chung and Weidi Xie and Andrew Zisserman",
|
39 |
-
title = "Voxceleb: Large-scale speaker verification in the wild",
|
40 |
-
journal = "Computer Science and Language",
|
41 |
-
year = "2019",
|
42 |
-
publisher = "Elsevier",
|
43 |
-
}
|
44 |
-
|
45 |
-
@InProceedings{Chung18b,
|
46 |
-
author = "Chung, J.~S. and Nagrani, A. and Zisserman, A.",
|
47 |
-
title = "VoxCeleb2: Deep Speaker Recognition",
|
48 |
-
booktitle = "INTERSPEECH",
|
49 |
-
year = "2018",
|
50 |
-
}
|
51 |
-
|
52 |
-
@InProceedings{Nagrani17,
|
53 |
-
author = "Nagrani, A. and Chung, J.~S. and Zisserman, A.",
|
54 |
-
title = "VoxCeleb: a large-scale speaker identification dataset",
|
55 |
-
booktitle = "INTERSPEECH",
|
56 |
-
year = "2017",
|
57 |
-
}
|
58 |
-
"""
|
59 |
-
|
60 |
-
_DESCRIPTION = """\
|
61 |
-
VoxCeleb is an audio-visual dataset consisting of short clips of human speech, extracted from interview videos uploaded to YouTube
|
62 |
-
"""
|
63 |
-
|
64 |
-
_URL = "https://mm.kaist.ac.kr/datasets/voxceleb"
|
65 |
-
|
66 |
-
_URLS = {
|
67 |
-
"video": {
|
68 |
-
"placeholder": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_parta",
|
69 |
-
"dev": (
|
70 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partaa",
|
71 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partab",
|
72 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partac",
|
73 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partad",
|
74 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partae",
|
75 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partaf",
|
76 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partag",
|
77 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partah",
|
78 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partai",
|
79 |
-
),
|
80 |
-
"test": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_mp4.zip",
|
81 |
-
},
|
82 |
-
"audio1": {
|
83 |
-
"placeholder": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_parta",
|
84 |
-
"dev": (
|
85 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partaa",
|
86 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partab",
|
87 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partac",
|
88 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partad",
|
89 |
-
),
|
90 |
-
"test": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_test_wav.zip",
|
91 |
-
},
|
92 |
-
"audio2": {
|
93 |
-
"placeholder": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_parta",
|
94 |
-
"dev": (
|
95 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partaa",
|
96 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partab",
|
97 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partac",
|
98 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partad",
|
99 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partae",
|
100 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partaf",
|
101 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partag",
|
102 |
-
"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partah",
|
103 |
-
),
|
104 |
-
"test": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_aac.zip",
|
105 |
-
},
|
106 |
-
}
|
107 |
-
|
108 |
-
_DATASET_IDS = {"video": "vox2", "audio1": "vox1", "audio2": "vox2"}
|
109 |
-
|
110 |
-
_PLACEHOLDER_MAPS = dict(
|
111 |
-
value
|
112 |
-
for urls in _URLS.values()
|
113 |
-
for value in ((urls["placeholder"], urls["dev"]), (urls["test"], (urls["test"],)))
|
114 |
-
)
|
115 |
-
|
116 |
-
|
117 |
-
def _mp_download(
|
118 |
-
url,
|
119 |
-
tmp_path,
|
120 |
-
resume_pos,
|
121 |
-
length,
|
122 |
-
queue,
|
123 |
-
):
|
124 |
-
if length == resume_pos:
|
125 |
-
return
|
126 |
-
with open(tmp_path, "ab" if resume_pos else "wb") as tmp:
|
127 |
-
headers = {}
|
128 |
-
if resume_pos != 0:
|
129 |
-
headers["Range"] = f"bytes={resume_pos}-"
|
130 |
-
response = requests.get(
|
131 |
-
url, headers=headers, stream=True
|
132 |
-
)
|
133 |
-
if response.status_code >= 200 and response.status_code < 300:
|
134 |
-
for chunk in response.iter_content(chunk_size=65536):
|
135 |
-
queue.put(len(chunk))
|
136 |
-
tmp.write(chunk)
|
137 |
-
else:
|
138 |
-
raise ConnectionError("failed to fetch dataset")
|
139 |
-
|
140 |
-
|
141 |
-
class VoxCeleb(datasets.GeneratorBasedBuilder):
|
142 |
-
"""VoxCeleb is an unlabled dataset consisting of short clips of human speech from interviews on YouTube"""
|
143 |
-
|
144 |
-
VERSION = datasets.Version("1.0.0")
|
145 |
-
|
146 |
-
BUILDER_CONFIGS = [
|
147 |
-
datasets.BuilderConfig(
|
148 |
-
name="video", version=VERSION, description="Video clips of human speech"
|
149 |
-
),
|
150 |
-
datasets.BuilderConfig(
|
151 |
-
name="audio", version=VERSION, description="Audio clips of human speech"
|
152 |
-
),
|
153 |
-
datasets.BuilderConfig(
|
154 |
-
name="audio1",
|
155 |
-
version=datasets.Version("1.0.0"),
|
156 |
-
description="Audio clips of human speech from VoxCeleb1",
|
157 |
-
),
|
158 |
-
datasets.BuilderConfig(
|
159 |
-
name="audio2",
|
160 |
-
version=datasets.Version("2.0.0"),
|
161 |
-
description="Audio clips of human speech from VoxCeleb2",
|
162 |
-
),
|
163 |
-
]
|
164 |
-
|
165 |
-
def _info(self):
|
166 |
-
features = {
|
167 |
-
"file": datasets.Value("string"),
|
168 |
-
"file_format": datasets.Value("string"),
|
169 |
-
"dataset_id": datasets.Value("string"),
|
170 |
-
"speaker_id": datasets.Value("string"),
|
171 |
-
"speaker_gender": datasets.Value("string"),
|
172 |
-
"video_id": datasets.Value("string"),
|
173 |
-
"clip_index": datasets.Value("int32"),
|
174 |
-
}
|
175 |
-
if self.config.name == "audio1":
|
176 |
-
features["speaker_name"] = datasets.Value("string")
|
177 |
-
features["speaker_nationality"] = datasets.Value("string")
|
178 |
-
if self.config.name.startswith("audio"):
|
179 |
-
features["audio"] = datasets.Audio(sampling_rate=16000)
|
180 |
-
|
181 |
-
return datasets.DatasetInfo(
|
182 |
-
description=_DESCRIPTION,
|
183 |
-
homepage=_URL,
|
184 |
-
supervised_keys=datasets.info.SupervisedKeysData("file", "speaker_id"),
|
185 |
-
features=datasets.Features(features),
|
186 |
-
citation=_CITATION,
|
187 |
-
)
|
188 |
-
|
189 |
-
def _split_generators(self, dl_manager):
|
190 |
-
if dl_manager.is_streaming:
|
191 |
-
raise TypeError("Streaming is not supported for VoxCeleb")
|
192 |
-
targets = (
|
193 |
-
["audio1", "audio2"] if self.config.name == "audio" else [self.config.name]
|
194 |
-
)
|
195 |
-
|
196 |
-
|
197 |
-
def download_custom(placeholder_url, path):
|
198 |
-
nonlocal dl_manager
|
199 |
-
sources = _PLACEHOLDER_MAPS[placeholder_url]
|
200 |
-
tmp_paths = []
|
201 |
-
lengths = []
|
202 |
-
start_positions = []
|
203 |
-
for url in sources:
|
204 |
-
head = requests.head(url,timeout=5,stream=True,allow_redirects=True,verify=False)
|
205 |
-
if head.status_code == 401:
|
206 |
-
raise ValueError("failed to authenticate with VoxCeleb host")
|
207 |
-
if head.status_code < 200 or head.status_code >= 300:
|
208 |
-
raise ValueError("failed to fetch dataset")
|
209 |
-
content_length = head.headers.get("Content-Length")
|
210 |
-
if content_length is None:
|
211 |
-
raise ValueError("expected non-empty Content-Length")
|
212 |
-
content_length = int(content_length)
|
213 |
-
tmp_path = Path(path + "." + sha256(url.encode("utf-8")).hexdigest())
|
214 |
-
tmp_paths.append(tmp_path)
|
215 |
-
lengths.append(content_length)
|
216 |
-
start_positions.append(
|
217 |
-
tmp_path.stat().st_size
|
218 |
-
if tmp_path.exists() and dl_manager.download_config.resume_download
|
219 |
-
else 0
|
220 |
-
)
|
221 |
-
|
222 |
-
def progress(q, cur, total):
|
223 |
-
with datasets.utils.logging.tqdm(
|
224 |
-
unit="B",
|
225 |
-
unit_scale=True,
|
226 |
-
total=total,
|
227 |
-
initial=cur,
|
228 |
-
desc="Downloading",
|
229 |
-
disable=not datasets.utils.logging.is_progress_bar_enabled(),
|
230 |
-
) as progress:
|
231 |
-
while cur < total:
|
232 |
-
try:
|
233 |
-
added = q.get(timeout=1)
|
234 |
-
progress.update(added)
|
235 |
-
cur += added
|
236 |
-
except:
|
237 |
-
continue
|
238 |
-
|
239 |
-
manager = Manager()
|
240 |
-
q = manager.Queue()
|
241 |
-
with Pool(len(sources)) as pool:
|
242 |
-
proc = Process(
|
243 |
-
target=progress,
|
244 |
-
args=(q, sum(start_positions), sum(lengths)),
|
245 |
-
daemon=True,
|
246 |
-
)
|
247 |
-
proc.start()
|
248 |
-
pool.starmap(
|
249 |
-
_mp_download,
|
250 |
-
zip(
|
251 |
-
sources,
|
252 |
-
tmp_paths,
|
253 |
-
start_positions,
|
254 |
-
lengths,
|
255 |
-
repeat(q),
|
256 |
-
),
|
257 |
-
)
|
258 |
-
pool.close()
|
259 |
-
proc.join()
|
260 |
-
with open(path, "wb") as out:
|
261 |
-
for tmp_path in tmp_paths:
|
262 |
-
with open(tmp_path, "rb") as tmp:
|
263 |
-
copyfileobj(tmp, out)
|
264 |
-
tmp_path.unlink()
|
265 |
-
|
266 |
-
metadata = dl_manager.download(
|
267 |
-
dict(
|
268 |
-
(
|
269 |
-
target,
|
270 |
-
f"https://mm.kaist.ac.kr/datasets/voxceleb/meta/{_DATASET_IDS[target]}_meta.csv",
|
271 |
-
)
|
272 |
-
for target in targets
|
273 |
-
)
|
274 |
-
)
|
275 |
-
|
276 |
-
mapped_paths = dl_manager.extract(
|
277 |
-
dl_manager.download_custom(
|
278 |
-
dict(
|
279 |
-
(
|
280 |
-
placeholder_key,
|
281 |
-
dict(
|
282 |
-
(target, _URLS[target][placeholder_key])
|
283 |
-
for target in targets
|
284 |
-
),
|
285 |
-
)
|
286 |
-
for placeholder_key in ("placeholder", "test")
|
287 |
-
),
|
288 |
-
download_custom,
|
289 |
-
)
|
290 |
-
)
|
291 |
-
|
292 |
-
return [
|
293 |
-
datasets.SplitGenerator(
|
294 |
-
name="train",
|
295 |
-
gen_kwargs={
|
296 |
-
"paths": mapped_paths["placeholder"],
|
297 |
-
"meta_paths": metadata,
|
298 |
-
},
|
299 |
-
),
|
300 |
-
datasets.SplitGenerator(
|
301 |
-
name="test",
|
302 |
-
gen_kwargs={
|
303 |
-
"paths": mapped_paths["test"],
|
304 |
-
"meta_paths": metadata,
|
305 |
-
},
|
306 |
-
),
|
307 |
-
]
|
308 |
-
|
309 |
-
def _generate_examples(self, paths, meta_paths):
|
310 |
-
key = 0
|
311 |
-
for conf in paths:
|
312 |
-
dataset_id = "vox1" if conf == "audio1" else "vox2"
|
313 |
-
meta = pd.read_csv(
|
314 |
-
meta_paths[conf],
|
315 |
-
sep="\t" if conf == "audio1" else " ,",
|
316 |
-
index_col=0,
|
317 |
-
engine="python",
|
318 |
-
)
|
319 |
-
dataset_path = next(Path(paths[conf]).iterdir())
|
320 |
-
dataset_format = dataset_path.name
|
321 |
-
for speaker_path in dataset_path.iterdir():
|
322 |
-
speaker = speaker_path.name
|
323 |
-
speaker_info = meta.loc[speaker]
|
324 |
-
for video in speaker_path.iterdir():
|
325 |
-
video_id = video.name
|
326 |
-
for clip in video.iterdir():
|
327 |
-
clip_index = int(clip.stem)
|
328 |
-
info = {
|
329 |
-
"file": str(clip),
|
330 |
-
"file_format": dataset_format,
|
331 |
-
"dataset_id": dataset_id,
|
332 |
-
"speaker_id": speaker,
|
333 |
-
"speaker_gender": speaker_info["Gender"],
|
334 |
-
"video_id": video_id,
|
335 |
-
"clip_index": clip_index,
|
336 |
-
}
|
337 |
-
if dataset_id == "vox1":
|
338 |
-
info["speaker_name"] = speaker_info["VGGFace1 ID"]
|
339 |
-
info["speaker_nationality"] = speaker_info["Nationality"]
|
340 |
-
if conf.startswith("audio"):
|
341 |
-
info["audio"] = info["file"]
|
342 |
-
yield key, info
|
343 |
-
key += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|