ProgramComputer commited on
Commit
1171a05
1 Parent(s): b33af39

Delete vox_celeb.py

Browse files
Files changed (1) hide show
  1. vox_celeb.py +0 -343
vox_celeb.py DELETED
@@ -1,343 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and Arjun Barrett.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """VoxCeleb audio-visual human speech dataset."""
18
-
19
- import json
20
- import os
21
- from getpass import getpass
22
- from hashlib import sha256
23
- from itertools import repeat
24
- from multiprocessing import Manager, Pool, Process
25
- from pathlib import Path
26
- from shutil import copyfileobj
27
-
28
- import pandas as pd
29
- import requests
30
-
31
- import datasets
32
- import urllib3
33
-
34
- urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
35
-
36
- _CITATION = """\
37
- @Article{Nagrani19,
38
- author = "Arsha Nagrani and Joon~Son Chung and Weidi Xie and Andrew Zisserman",
39
- title = "Voxceleb: Large-scale speaker verification in the wild",
40
- journal = "Computer Science and Language",
41
- year = "2019",
42
- publisher = "Elsevier",
43
- }
44
-
45
- @InProceedings{Chung18b,
46
- author = "Chung, J.~S. and Nagrani, A. and Zisserman, A.",
47
- title = "VoxCeleb2: Deep Speaker Recognition",
48
- booktitle = "INTERSPEECH",
49
- year = "2018",
50
- }
51
-
52
- @InProceedings{Nagrani17,
53
- author = "Nagrani, A. and Chung, J.~S. and Zisserman, A.",
54
- title = "VoxCeleb: a large-scale speaker identification dataset",
55
- booktitle = "INTERSPEECH",
56
- year = "2017",
57
- }
58
- """
59
-
60
- _DESCRIPTION = """\
61
- VoxCeleb is an audio-visual dataset consisting of short clips of human speech, extracted from interview videos uploaded to YouTube
62
- """
63
-
64
- _URL = "https://mm.kaist.ac.kr/datasets/voxceleb"
65
-
66
- _URLS = {
67
- "video": {
68
- "placeholder": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_parta",
69
- "dev": (
70
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partaa",
71
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partab",
72
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partac",
73
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partad",
74
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partae",
75
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partaf",
76
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partag",
77
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partah",
78
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_mp4_partai",
79
- ),
80
- "test": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_mp4.zip",
81
- },
82
- "audio1": {
83
- "placeholder": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_parta",
84
- "dev": (
85
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partaa",
86
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partab",
87
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partac",
88
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav_partad",
89
- ),
90
- "test": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_test_wav.zip",
91
- },
92
- "audio2": {
93
- "placeholder": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_parta",
94
- "dev": (
95
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partaa",
96
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partab",
97
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partac",
98
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partad",
99
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partae",
100
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partaf",
101
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partag",
102
- "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_dev_aac_partah",
103
- ),
104
- "test": "https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_aac.zip",
105
- },
106
- }
107
-
108
- _DATASET_IDS = {"video": "vox2", "audio1": "vox1", "audio2": "vox2"}
109
-
110
- _PLACEHOLDER_MAPS = dict(
111
- value
112
- for urls in _URLS.values()
113
- for value in ((urls["placeholder"], urls["dev"]), (urls["test"], (urls["test"],)))
114
- )
115
-
116
-
117
- def _mp_download(
118
- url,
119
- tmp_path,
120
- resume_pos,
121
- length,
122
- queue,
123
- ):
124
- if length == resume_pos:
125
- return
126
- with open(tmp_path, "ab" if resume_pos else "wb") as tmp:
127
- headers = {}
128
- if resume_pos != 0:
129
- headers["Range"] = f"bytes={resume_pos}-"
130
- response = requests.get(
131
- url, headers=headers, stream=True
132
- )
133
- if response.status_code >= 200 and response.status_code < 300:
134
- for chunk in response.iter_content(chunk_size=65536):
135
- queue.put(len(chunk))
136
- tmp.write(chunk)
137
- else:
138
- raise ConnectionError("failed to fetch dataset")
139
-
140
-
141
- class VoxCeleb(datasets.GeneratorBasedBuilder):
142
- """VoxCeleb is an unlabled dataset consisting of short clips of human speech from interviews on YouTube"""
143
-
144
- VERSION = datasets.Version("1.0.0")
145
-
146
- BUILDER_CONFIGS = [
147
- datasets.BuilderConfig(
148
- name="video", version=VERSION, description="Video clips of human speech"
149
- ),
150
- datasets.BuilderConfig(
151
- name="audio", version=VERSION, description="Audio clips of human speech"
152
- ),
153
- datasets.BuilderConfig(
154
- name="audio1",
155
- version=datasets.Version("1.0.0"),
156
- description="Audio clips of human speech from VoxCeleb1",
157
- ),
158
- datasets.BuilderConfig(
159
- name="audio2",
160
- version=datasets.Version("2.0.0"),
161
- description="Audio clips of human speech from VoxCeleb2",
162
- ),
163
- ]
164
-
165
- def _info(self):
166
- features = {
167
- "file": datasets.Value("string"),
168
- "file_format": datasets.Value("string"),
169
- "dataset_id": datasets.Value("string"),
170
- "speaker_id": datasets.Value("string"),
171
- "speaker_gender": datasets.Value("string"),
172
- "video_id": datasets.Value("string"),
173
- "clip_index": datasets.Value("int32"),
174
- }
175
- if self.config.name == "audio1":
176
- features["speaker_name"] = datasets.Value("string")
177
- features["speaker_nationality"] = datasets.Value("string")
178
- if self.config.name.startswith("audio"):
179
- features["audio"] = datasets.Audio(sampling_rate=16000)
180
-
181
- return datasets.DatasetInfo(
182
- description=_DESCRIPTION,
183
- homepage=_URL,
184
- supervised_keys=datasets.info.SupervisedKeysData("file", "speaker_id"),
185
- features=datasets.Features(features),
186
- citation=_CITATION,
187
- )
188
-
189
- def _split_generators(self, dl_manager):
190
- if dl_manager.is_streaming:
191
- raise TypeError("Streaming is not supported for VoxCeleb")
192
- targets = (
193
- ["audio1", "audio2"] if self.config.name == "audio" else [self.config.name]
194
- )
195
-
196
-
197
- def download_custom(placeholder_url, path):
198
- nonlocal dl_manager
199
- sources = _PLACEHOLDER_MAPS[placeholder_url]
200
- tmp_paths = []
201
- lengths = []
202
- start_positions = []
203
- for url in sources:
204
- head = requests.head(url,timeout=5,stream=True,allow_redirects=True,verify=False)
205
- if head.status_code == 401:
206
- raise ValueError("failed to authenticate with VoxCeleb host")
207
- if head.status_code < 200 or head.status_code >= 300:
208
- raise ValueError("failed to fetch dataset")
209
- content_length = head.headers.get("Content-Length")
210
- if content_length is None:
211
- raise ValueError("expected non-empty Content-Length")
212
- content_length = int(content_length)
213
- tmp_path = Path(path + "." + sha256(url.encode("utf-8")).hexdigest())
214
- tmp_paths.append(tmp_path)
215
- lengths.append(content_length)
216
- start_positions.append(
217
- tmp_path.stat().st_size
218
- if tmp_path.exists() and dl_manager.download_config.resume_download
219
- else 0
220
- )
221
-
222
- def progress(q, cur, total):
223
- with datasets.utils.logging.tqdm(
224
- unit="B",
225
- unit_scale=True,
226
- total=total,
227
- initial=cur,
228
- desc="Downloading",
229
- disable=not datasets.utils.logging.is_progress_bar_enabled(),
230
- ) as progress:
231
- while cur < total:
232
- try:
233
- added = q.get(timeout=1)
234
- progress.update(added)
235
- cur += added
236
- except:
237
- continue
238
-
239
- manager = Manager()
240
- q = manager.Queue()
241
- with Pool(len(sources)) as pool:
242
- proc = Process(
243
- target=progress,
244
- args=(q, sum(start_positions), sum(lengths)),
245
- daemon=True,
246
- )
247
- proc.start()
248
- pool.starmap(
249
- _mp_download,
250
- zip(
251
- sources,
252
- tmp_paths,
253
- start_positions,
254
- lengths,
255
- repeat(q),
256
- ),
257
- )
258
- pool.close()
259
- proc.join()
260
- with open(path, "wb") as out:
261
- for tmp_path in tmp_paths:
262
- with open(tmp_path, "rb") as tmp:
263
- copyfileobj(tmp, out)
264
- tmp_path.unlink()
265
-
266
- metadata = dl_manager.download(
267
- dict(
268
- (
269
- target,
270
- f"https://mm.kaist.ac.kr/datasets/voxceleb/meta/{_DATASET_IDS[target]}_meta.csv",
271
- )
272
- for target in targets
273
- )
274
- )
275
-
276
- mapped_paths = dl_manager.extract(
277
- dl_manager.download_custom(
278
- dict(
279
- (
280
- placeholder_key,
281
- dict(
282
- (target, _URLS[target][placeholder_key])
283
- for target in targets
284
- ),
285
- )
286
- for placeholder_key in ("placeholder", "test")
287
- ),
288
- download_custom,
289
- )
290
- )
291
-
292
- return [
293
- datasets.SplitGenerator(
294
- name="train",
295
- gen_kwargs={
296
- "paths": mapped_paths["placeholder"],
297
- "meta_paths": metadata,
298
- },
299
- ),
300
- datasets.SplitGenerator(
301
- name="test",
302
- gen_kwargs={
303
- "paths": mapped_paths["test"],
304
- "meta_paths": metadata,
305
- },
306
- ),
307
- ]
308
-
309
- def _generate_examples(self, paths, meta_paths):
310
- key = 0
311
- for conf in paths:
312
- dataset_id = "vox1" if conf == "audio1" else "vox2"
313
- meta = pd.read_csv(
314
- meta_paths[conf],
315
- sep="\t" if conf == "audio1" else " ,",
316
- index_col=0,
317
- engine="python",
318
- )
319
- dataset_path = next(Path(paths[conf]).iterdir())
320
- dataset_format = dataset_path.name
321
- for speaker_path in dataset_path.iterdir():
322
- speaker = speaker_path.name
323
- speaker_info = meta.loc[speaker]
324
- for video in speaker_path.iterdir():
325
- video_id = video.name
326
- for clip in video.iterdir():
327
- clip_index = int(clip.stem)
328
- info = {
329
- "file": str(clip),
330
- "file_format": dataset_format,
331
- "dataset_id": dataset_id,
332
- "speaker_id": speaker,
333
- "speaker_gender": speaker_info["Gender"],
334
- "video_id": video_id,
335
- "clip_index": clip_index,
336
- }
337
- if dataset_id == "vox1":
338
- info["speaker_name"] = speaker_info["VGGFace1 ID"]
339
- info["speaker_nationality"] = speaker_info["Nationality"]
340
- if conf.startswith("audio"):
341
- info["audio"] = info["file"]
342
- yield key, info
343
- key += 1