ProgramComputer commited on
Commit
30420d9
1 Parent(s): 950b4cb

Update test.py

Browse files
Files changed (1) hide show
  1. test.py +94 -0
test.py CHANGED
@@ -125,6 +125,100 @@ class NestedDataStructure:
125
  else:
126
  return [data]
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  def _mp_download(
129
  url,
130
  tmp_path,
 
125
  else:
126
  return [data]
127
 
128
+ def map_nested(
129
+ function: Callable[[Any], Any],
130
+ data_struct: Any,
131
+ dict_only: bool = False,
132
+ map_list: bool = True,
133
+ map_tuple: bool = False,
134
+ map_numpy: bool = False,
135
+ num_proc: Optional[int] = None,
136
+ parallel_min_length: int = 2,
137
+ types: Optional[tuple] = None,
138
+ disable_tqdm: bool = True,
139
+ desc: Optional[str] = None,
140
+ ) -> Any:
141
+ """Apply a function recursively to each element of a nested data struct.
142
+
143
+ Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to
144
+ `parallel_min_length`.
145
+
146
+ <Changed version="2.5.0">
147
+
148
+ Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``.
149
+
150
+ Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and
151
+ multiprocessing is used.
152
+
153
+ </Changed>
154
+
155
+ Args:
156
+ function (`Callable`): Function to be applied to `data_struct`.
157
+ data_struct (`Any`): Data structure to apply `function` to.
158
+ dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in
159
+ `data_struct`.
160
+ map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict`
161
+ values).
162
+ map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides
163
+ `dict` values).
164
+ map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides
165
+ `dict` values).
166
+ num_proc (`int`, *optional*): Number of processes.
167
+ parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel
168
+ processing.
169
+ <Added version="2.5.0"/>
170
+ types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their
171
+ elements.
172
+ disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar.
173
+ desc (`str`, *optional*): Prefix for the tqdm progressbar.
174
+
175
+ Returns:
176
+ `Any`
177
+ """
178
+ if types is None:
179
+ types = []
180
+ if not dict_only:
181
+ if map_list:
182
+ types.append(list)
183
+ if map_tuple:
184
+ types.append(tuple)
185
+ if map_numpy:
186
+ types.append(np.ndarray)
187
+ types = tuple(types)
188
+
189
+ # Singleton
190
+ if not isinstance(data_struct, dict) and not isinstance(data_struct, types):
191
+ return function(data_struct)
192
+
193
+ disable_tqdm = disable_tqdm or not logging.is_progress_bar_enabled()
194
+ iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct
195
+
196
+ if num_proc is None:
197
+ num_proc = 1
198
+ if num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length:
199
+ mapped = [
200
+ _single_map_nested((function, obj, types, None, True, None))
201
+ for obj in logging.tqdm(iterable, disable=disable_tqdm, desc=desc)
202
+ ]
203
+ else:
204
+ with warnings.catch_warnings():
205
+ warnings.filterwarnings(
206
+ "ignore",
207
+ message=".* is experimental and might be subject to breaking changes in the future\\.$",
208
+ category=UserWarning,
209
+ )
210
+ mapped = parallel_map(function, iterable, num_proc, types, disable_tqdm, desc, _single_map_nested)
211
+
212
+ if isinstance(data_struct, dict):
213
+ return dict(zip(data_struct.keys(), mapped))
214
+ else:
215
+ if isinstance(data_struct, list):
216
+ return mapped
217
+ elif isinstance(data_struct, tuple):
218
+ return tuple(mapped)
219
+ else:
220
+ return np.array(mapped)
221
+
222
  def _mp_download(
223
  url,
224
  tmp_path,