# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and Arjun Barrett. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """VoxCeleb audio-visual human speech dataset.""" import json import os from io import BytesIO from getpass import getpass from hashlib import sha256 from itertools import repeat from multiprocessing import Manager, Pool, Process from pathlib import Path from shutil import copyfileobj import pandas as pd import requests import datasets import urllib3 import zipfile import traceback import fsspec as fs import librosa urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) _CITATION = """\ @Article{Nagrani19, author = "Arsha Nagrani and Joon~Son Chung and Weidi Xie and Andrew Zisserman", title = "Voxceleb: Large-scale speaker verification in the wild", journal = "Computer Science and Language", year = "2019", publisher = "Elsevier", } @InProceedings{Chung18b, author = "Chung, J.~S. and Nagrani, A. and Zisserman, A.", title = "VoxCeleb2: Deep Speaker Recognition", booktitle = "INTERSPEECH", year = "2018", } @InProceedings{Nagrani17, author = "Nagrani, A. and Chung, J.~S. and Zisserman, A.", title = "VoxCeleb: a large-scale speaker identification dataset", booktitle = "INTERSPEECH", year = "2017", } """ _DESCRIPTION = """\ VoxCeleb is an audio-visual dataset consisting of short clips of human speech, extracted from interview videos uploaded to YouTube """ _URL = "https://mm.kaist.ac.kr/datasets/voxceleb" _URLS = { "video": { "dev": { 1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_1.zip", 2:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_2.zip", 3:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_3.zip", 4:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_4.zip", 5:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_5.zip", 6:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_mp4_6.zip", }, "test": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_mp4.zip"} }, "audio1": { "dev": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_dev_wav.zip"}, "test": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox1/vox1_test_wav.zip"} }, "audio2": { "dev": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_aac_1.zip",2:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_aac_2.zip"}, "test": {1:"https://huggingface.co/datasets/ProgramComputer/voxceleb/resolve/main/vox2/vox2_test_aac.zip"}, }, } _DATASET_IDS = {"video": "vox2", "audio1": "vox1", "audio2": "vox2"} # _PLACEHOLDER_MAPS = dict( # value # for urls in _URLS.values() # for value in ((urls["dev"], urls["dev"]), (urls["test"], (urls["test"],))) # ) def _mp_download( url, tmp_path, resume_pos, length, queue, ): if length == resume_pos: return with open(tmp_path, "ab" if resume_pos else "wb") as tmp: headers = {} if resume_pos != 0: headers["Range"] = f"bytes={resume_pos}-" response = requests.get( url, headers=headers, stream=True ) if response.status_code >= 200 and response.status_code < 300: for chunk in response.iter_content(chunk_size=65536): queue.put(len(chunk)) tmp.write(chunk) else: raise ConnectionError("failed to fetch dataset") class VoxCeleb(datasets.GeneratorBasedBuilder): """VoxCeleb is an unlabled dataset consisting of short clips of human speech from interviews on YouTube""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="video", version=VERSION, description="Video clips of human speech" ), datasets.BuilderConfig( name="audio", version=VERSION, description="Audio clips of human speech" ), datasets.BuilderConfig( name="audio1", version=datasets.Version("1.0.0"), description="Audio clips of human speech from VoxCeleb1", ), datasets.BuilderConfig( name="audio2", version=datasets.Version("2.0.0"), description="Audio clips of human speech from VoxCeleb2", ), ] def _info(self): features = { "file": datasets.Value("string"), "file_format": datasets.Value("string"), "dataset_id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "speaker_gender": datasets.Value("string"), "video_id": datasets.Value("string"), "clip_index": datasets.Value("int32"), } if self.config.name.startswith("audio"): features["speaker_name"] = datasets.Value("string") features["speaker_nationality"] = datasets.Value("string") features["audio"] = datasets.Audio(mono=False) if self.config.name.startswith("video"): features["video"] = datasets.Value("large_binary") return datasets.DatasetInfo( description=_DESCRIPTION, homepage=_URL, supervised_keys=datasets.info.SupervisedKeysData("file", "speaker_id"), features=datasets.Features(features), citation=_CITATION, ) def _split_generators(self, dl_manager): # if dl_manager.is_streaming: # raise TypeError("Streaming is not supported for VoxCeleb") targets = ( ["audio1", "audio2"] if self.config.name == "audio" else [self.config.name] ) def download_custom(placeholder_url, path): nonlocal dl_manager sources = _PLACEHOLDER_MAPS[placeholder_url] tmp_paths = [] lengths = [] start_positions = [] for url in sources: head = requests.head(url,timeout=5,stream=True,allow_redirects=True,verify=False) if head.status_code == 401: raise ValueError("failed to authenticate with VoxCeleb host") if head.status_code < 200 or head.status_code >= 300: raise ValueError("failed to fetch dataset") content_length = head.headers.get("Content-Length") if content_length is None: raise ValueError("expected non-empty Content-Length") content_length = int(content_length) tmp_path = Path(path + "." + sha256(url.encode("utf-8")).hexdigest()) tmp_paths.append(tmp_path) lengths.append(content_length) start_positions.append( tmp_path.stat().st_size if tmp_path.exists() and dl_manager.download_config.resume_download else 0 ) def progress(q, cur, total): with datasets.utils.logging.tqdm( unit="B", unit_scale=True, total=total, initial=cur, desc="Downloading", disable=not datasets.utils.logging.is_progress_bar_enabled(), ) as progress: while cur < total: try: added = q.get(timeout=1) progress.update(added) cur += added except: continue manager = Manager() q = manager.Queue() with Pool(len(sources)) as pool: proc = Process( target=progress, args=(q, sum(start_positions), sum(lengths)), daemon=True, ) proc.start() pool.starmap( _mp_download, zip( sources, tmp_paths, start_positions, lengths, repeat(q), ), ) pool.close() proc.join() with open(path, "wb") as out: for tmp_path in tmp_paths: with open(tmp_path, "rb") as tmp: copyfileobj(tmp, out) tmp_path.unlink() metadata = dl_manager.download( dict( ( target, f"https://mm.kaist.ac.kr/datasets/voxceleb/meta/{_DATASET_IDS[target]}_meta.csv", ) for target in targets ) ) mapped_paths = dl_manager.download_and_extract( dict( ( placeholder_key, dict( (target, _URLS[target][placeholder_key]) for target in targets ), ) for placeholder_key in ("dev", "test") )) apply_function_recursive = lambda d, f: {k: apply_function_recursive(v, f) if isinstance(v, dict) else f(v) for k, v in d.items()} mapped_paths = apply_function_recursive(mapped_paths, dl_manager.iter_files) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "paths":mapped_paths["dev"], "meta_paths": metadata, }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "paths": mapped_paths["test"], "meta_paths": metadata, }, ), ] def _generate_examples(self, paths, meta_paths): key = 0 for conf in paths: dataset_id = "vox1" if conf == "audio1" else "vox2" meta = pd.read_csv( meta_paths[conf], sep="\t" if conf == "audio1" else " ,", index_col=0, engine="python", ) for path in paths[conf].values(): for file in path: # subdirs = [x[0] for x in os.walk(path)] # raise Exception(subdirs) #raise Exception(file) #raise Exception(os.is_symlink(path)) #raise Exception(os.listdir(path)) try: t = tuple(file.split("::")[0].split("/")[2:]) _,dataset_format,speaker,video_id,clip_index= (None,) * (5 - len(t)) + t except Exception: raise Exception(file.split("::")[0].split("/")[2:]) speaker_info = meta.loc[speaker] clip_index = int(Path(clip_index).stem) info = { "file": file, "file_format": dataset_format, "dataset_id": dataset_id, "speaker_id": speaker, "speaker_gender": speaker_info["Gender"], "video_id": video_id, "clip_index": clip_index, } if dataset_id == "vox1": info["speaker_name"] = speaker_info["VGGFace1 ID"] info["speaker_nationality"] = speaker_info["Nationality"] if conf.startswith("audio"): if dataset_format == "aac": with fs.open(info["file"], 'rb') as f: y, sr = librosa.load(f) info["audio"] = {'array':y,'path':info["file"],'sampling_rate':sr} else: info["audio"] = info["file"] if conf.startswith("video"): with fs.open(info["file"], 'rb') as f: info["video"] = BytesIO(f.read()).getvalue() yield key, info key += 1