Datasets:
QCRI
/

Modalities:
Image
Text
Formats:
parquet
Languages:
Arabic
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,279 Bytes
d89af5f
 
 
 
 
ec33a96
d89af5f
 
 
 
 
d008e12
 
 
 
 
 
 
 
 
 
 
 
b6a64bd
d008e12
 
 
 
 
 
 
d89af5f
685f078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257976b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5198cc6
257976b
 
 
 
 
 
685f078
 
 
9984ef9
685f078
9984ef9
685f078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d89af5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: cc-by-nc-sa-4.0
task_categories:
- image-classification
- text-classification
- visual-question-answering
language:
- ar
pretty_name: ArMeme
size_categories:
- 1K<n<10K
dataset_info:
  description: "Arabic multimodal memes dataset." 
  features:
  - name: id
    dtype: string
  - name: text
    dtype: string    
  - name: image
    dtype: Image
  - name: img_path
    dtype: string
  - name: class_label
    dtype: string
  splits:
  - name: train
    num_examples: 4007
  - name: dev
    num_examples: 584
  - name: test
    num_examples: 1134
---
# ArMeme Dataset

## Overview

ArMeme is the first multimodal Arabic memes dataset that includes both text and images, collected from various social media platforms. It serves as the first resource dedicated to Arabic multimodal research. While the dataset has been annotated to identify propaganda in memes, it is versatile and can be utilized for a wide range of other research purposes, including sentiment analysis, hate speech detection, cultural studies, meme generation, and cross-lingual transfer learning. The dataset opens new avenues for exploring the intersection of language, culture, and visual communication.

## Dataset Structure

The dataset is divided into three splits:
- **Train**: The training set
- **Dev**: The development/validation set
- **Test**: The test set

Each entry in the dataset includes:
- `id`: id corresponds to the entry
- `text`: The textual content associated with the image.
- `image`: The corresponding image.
- `img_path`: The file path to the image.


## How to Use

You can load the dataset using the `datasets` library from Hugging Face:

```python
from datasets import load_dataset

dataset = load_dataset("QCRI/ArMeme")

# Specify the directory where you want to save the dataset
output_dir="./ArMeme/"

# Save the dataset to the specified directory. This will save all splits to the output directory.
dataset.save_to_disk(output_dir)

# If you want to get the raw images from HF dataset format

from PIL import Image
import os
import json

# Directory to save the images
output_dir="./ArMeme/"
os.makedirs(output_dir, exist_ok=True)

# Iterate over the dataset and save each image
for split in ['train','dev','test']:     
    jsonl_path = os.path.join(output_dir, f"arabic_memes_categorization_{split}.jsonl")
    with open(jsonl_path, 'w', encoding='utf-8') as f:    
        for idx, item in enumerate(dataset[split]):
            # Access the image directly as it's already a PIL.Image object
            image = item['image']
            image_path = os.path.join(output_dir, item['img_path'])
            # Ensure the directory exists
            os.makedirs(os.path.dirname(image_path), exist_ok=True)
            image.save(image_path)
            del item['image']
            f.write(json.dumps(item, ensure_ascii=False) + '\n')
```

**Language:** Arabic

**Modality:** Multimodal (text + image)

**Number of Samples:** ~6000


## License

This dataset is licensed under the **CC-By-NC-SA-4.0** license.

## Citation

```
@article{alam2024armeme,
  title={{ArMeme}: Propagandistic Content in Arabic Memes},
  author={Alam, Firoj and Hasnat, Abul and Ahmed, Fatema and Hasan, Md Arid and Hasanain, Maram},
  year={2024},
  journal={arXiv: 2406.03916},
}
```