Datasets:
QCRI
/

Modalities:
Image
Text
Formats:
parquet
Languages:
Arabic
ArXiv:
Libraries:
Datasets
pandas
License:
ArMeme / armeme_loader.py
Firoj's picture
Upload armeme_loader.py with huggingface_hub
263a074 verified
raw
history blame
1.52 kB
import os
import json
import datasets
from datasets import Dataset, DatasetDict, load_dataset, Features, Value, Image
# Define the paths to your dataset
image_root_dir = "./"
train_jsonl_file_path = "arabic_memes_categorization_train.jsonl"
dev_jsonl_file_path = "arabic_memes_categorization_dev.jsonl"
test_jsonl_file_path = "arabic_memes_categorization_test.jsonl"
# Define features for the dataset
features = Features({
'id': Value('string'),
'text': Value('string'),
'image': Image(),
'img_path': Value('string')
})
# Function to load each dataset split
def load_armeme_split(jsonl_file_path, image_root_dir):
data = []
# Load JSONL file
with open(jsonl_file_path, 'r') as f:
for line in f:
item = json.loads(line)
# Update image path to absolute path
item['img_path'] = os.path.join(image_root_dir, item['img_path'])
data.append(item)
# Create a Hugging Face dataset
dataset = Dataset.from_dict(data, features=features)
return dataset
# Load each split
train_dataset = load_armeme_split(train_jsonl_file_path, image_root_dir)
dev_dataset = load_armeme_split(dev_jsonl_file_path, image_root_dir)
test_dataset = load_armeme_split(test_jsonl_file_path, image_root_dir)
# Create a DatasetDict
dataset_dict = DatasetDict({
'train': train_dataset,
'dev': dev_dataset,
'test': test_dataset
})
# Push the dataset to Hugging Face Hub
dataset_dict.push_to_hub("QCRI/ArMeme", license="CC-By-NC-SA-4.0")