Datasets:
QCRI
/

Modalities:
Image
Text
Formats:
parquet
Languages:
Arabic
ArXiv:
Libraries:
Datasets
pandas
License:
Firoj commited on
Commit
1970f2d
1 Parent(s): 31192d9

Delete armeme_loader.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. armeme_loader.py +0 -49
armeme_loader.py DELETED
@@ -1,49 +0,0 @@
1
- import os
2
- import json
3
- import datasets
4
- from datasets import Dataset, DatasetDict, load_dataset, Features, Value, Image
5
-
6
- # Define the paths to your dataset
7
- image_root_dir = "./"
8
- train_jsonl_file_path = "arabic_memes_categorization_train.jsonl"
9
- dev_jsonl_file_path = "arabic_memes_categorization_dev.jsonl"
10
- test_jsonl_file_path = "arabic_memes_categorization_test.jsonl"
11
-
12
- # Define features for the dataset
13
- features = Features({
14
- 'id': Value('string'),
15
- 'text': Value('string'),
16
- 'image': Image(),
17
- 'img_path': Value('string')
18
- })
19
-
20
- # Function to load each dataset split
21
- def load_armeme_split(jsonl_file_path, image_root_dir):
22
- data = []
23
-
24
- # Load JSONL file
25
- with open(jsonl_file_path, 'r') as f:
26
- for line in f:
27
- item = json.loads(line)
28
- # Update image path to absolute path
29
- item['img_path'] = os.path.join(image_root_dir, item['img_path'])
30
- data.append(item)
31
-
32
- # Create a Hugging Face dataset
33
- dataset = Dataset.from_dict(data, features=features)
34
- return dataset
35
-
36
- # Load each split
37
- train_dataset = load_armeme_split(train_jsonl_file_path, image_root_dir)
38
- dev_dataset = load_armeme_split(dev_jsonl_file_path, image_root_dir)
39
- test_dataset = load_armeme_split(test_jsonl_file_path, image_root_dir)
40
-
41
- # Create a DatasetDict
42
- dataset_dict = DatasetDict({
43
- 'train': train_dataset,
44
- 'dev': dev_dataset,
45
- 'test': test_dataset
46
- })
47
-
48
- # Push the dataset to Hugging Face Hub
49
- dataset_dict.push_to_hub("QCRI/ArMeme", license="CC-By-NC-SA-4.0")