import os import json import datasets from datasets import Dataset, DatasetDict, load_dataset, Features, Value, Image, ClassLabel # Define the paths to your dataset image_root_dir = "./" train_jsonl_file_path = "arabic_memes_categorization_train.jsonl" dev_jsonl_file_path = "arabic_memes_categorization_dev.jsonl" test_jsonl_file_path = "arabic_memes_categorization_test.jsonl" # Function to load each dataset split def load_armeme_split(jsonl_file_path, image_root_dir): texts = [] images = [] ids=[] class_labels=[] image_file_paths = [] # Load JSONL file with open(jsonl_file_path, 'r') as f: for line in f: item = json.loads(line) ids.append(item['id']) texts.append(item['text']) image_file_path = os.path.join(image_root_dir, item['img_path']) images.append(image_file_path) image_file_paths.append(image_file_path) class_labels.append(item['class_label']) # Create a dictionary to match the dataset structure data_dict = { 'id':ids, 'text': texts, 'image': images, 'img_path': image_file_paths, 'class_label': class_labels } # Define the features features = Features({ 'id': Value('string'), 'text': Value('string'), 'image': Image(), 'img_path': Value('string'), 'class_label': ClassLabel(names=['not_propaganda','propaganda','not-meme','other']) }) # Create a Hugging Face dataset from the dictionary dataset = Dataset.from_dict(data_dict, features=features) return dataset # Load each split train_dataset = load_armeme_split(train_jsonl_file_path, image_root_dir) dev_dataset = load_armeme_split(dev_jsonl_file_path, image_root_dir) test_dataset = load_armeme_split(test_jsonl_file_path, image_root_dir) # Create a DatasetDict dataset_dict = DatasetDict({ 'train': train_dataset, 'dev': dev_dataset, 'test': test_dataset }) # Push the dataset to Hugging Face Hub dataset_dict.push_to_hub("QCRI/ArMeme")