--- license: apache-2.0 task_categories: - time-series-forecasting --- ### TSFM-ScalingLaws-Dataset This is the dataset for the paper [Towards Neural Scaling Laws for Time Series Foundation Models](https://arxiv.org/abs/2410.12360). Code: https://github.com/Qingrenn/TSFM-ScalingLaws Well-trained models: https://huggingface.co/PeacefulData/TSFM-ScalingLaws-Checkpoints ### Dataset Summary |Domain|Transport|Climate|Energy|Cloud|Health|Sales|Web|Total |------|------|---------|-----------|----------|----------|----------|----------|----------| |Datasets|8|2|14|3|9|1|2|39| |Time Points|4.82B|4.73B|4.76B|2.15B|232M|140M|40M|16.8B| |Proportion|28.52%|28.06%|28.21%|12.76%|1.38%|0.83%|0.24%|100%| ### Dataset Details |Dataset|Domain|Timepoint|SequenceNum|Proportion| |------|------|---------|-----------|----------| |cmip6_1850|Climate|1435238400|196608|0.085| |cmip6_1855|Climate|1435238400|196608|0.085| |era5_1990|Climate|930349056|106496|0.055| |era5_1989|Climate|930349056|106496|0.055| |azure_vm_traces_2017|Cloud|885522908|159472|0.052| |alibaba_cluster_trace_2018|Cloud|190385060|116818|0.011| |borg_cluster_data_2011|Cloud|1075105708|286772|0.063| |PEMS07|Energy|24921792|883|0.0014| |elf|Energy|21792|1|1.29e-06| |bdg-2_panther|Energy|919800|105|5.45e-05| |buildings_900k|Energy|4718473097|538577|0.27| |solar_power|Energy|7397222|1|0.00043| |gfc17_load|Energy|140352|8|8.32e-06| |gfc14_load|Energy|17520|1|1.039-06| |bdg-2_bear|Energy|1482312|91|8.79e-05| |bdg-2_fox|Energy|2324568|135|0.00013| |elecdemand|Energy|17520|1|1.039e-06| |covid19_energy|Energy|31912|1|1.89e-06| |spain|Energy|35064|1|2.079e-06| |australian_electricity_demand|Energy|1153584|5|6.84e-05| |pdb|Energy|17520|1|1.039e-06| |sceaux|Energy|34223|1|2.029e-06| |AtrialFibrillation|Health|38400|60|2.27e-06| |SelfRegulationSCP2|Health|3064320|2660|0.00018| |SelfRegulationSCP1|Health|3015936|3366|0.00017| |IEEEPPG|Health|15480000|15480|0.00091| |TDBrain|Health|73299996|28644|0.0043| |BIDMC32HR|Health|63592000|15898|0.0037| |PigCVP|Health|624000|312|3.7009e-05| |PigArtPressure|Health|624000|312|3.7009e-05| |MotorImagery|Health|72576000|24192|0.0043| |favorita_sales|Sales|139179538|111840|0.0082| |largest_2019|Transport|904032000|8600|0.053| |largest_2021|Transport|898565760|8548|0.053| |PEMS04|Transport|15649632|921|0.00092| |largest_2020|Transport|902397888|8561|0.053| |largest_2017|Transport|861563520|8196|0.051| |PEMS_BAY|Transport|16941600|325|0.0010| |traffic_weekly|Transport|82752|862|4.90e-06| |Q-TRAFFIC|Transport|264386688|45148|0.015| |largest_2018|Transport|885951360|8428|0.052| |LOOP_SEATTLE|Transport|33953760|323|0.0020| |PEMS08|Transport|9106560|510|0.00054| |kaggle_web_traffic_weekly|Web|16537182|145063|0.00098| |wiki-rolling_nips|Web|40619100|47675|0.0024|