|
import json |
|
import csv |
|
import os |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = "RAR-b alphanli Dataset" |
|
_SPLITS = ["corpus", "queries", "qrels"] |
|
|
|
URL = "" |
|
_URLs = {subset: URL + f"{subset}.jsonl" if subset != "qrels" else URL + f"qrels/test.tsv" for subset in _SPLITS} |
|
|
|
class RARb(datasets.GeneratorBasedBuilder): |
|
"""RAR-b BenchmarkDataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=name, |
|
description=f"This is the {name} in the RAR-b alphanli dataset.", |
|
) for name in _SPLITS |
|
] |
|
DEFAULT_CONFIG_NAME = "qrels" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
}) if self.config.name != "qrels" else datasets.Features({ |
|
"query-id": datasets.Value("string"), |
|
"corpus-id": datasets.Value("string"), |
|
"score": datasets.Value("int32"), |
|
}), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == "qrels": |
|
test_url = URL + "qrels/test.tsv" |
|
test_path = dl_manager.download_and_extract(test_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": test_path}, |
|
), |
|
] |
|
else: |
|
my_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=self.config.name, |
|
gen_kwargs={"filepath": data_dir}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
if self.config.name == "qrels": |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.reader(f, delimiter="\t") |
|
header = next(reader) |
|
for i, row in enumerate(reader): |
|
yield i, { |
|
"query-id": row[0], |
|
"corpus-id": row[1], |
|
"score": int(row[2]), |
|
} |
|
else: |
|
with open(filepath, encoding="utf-8") as f: |
|
texts = f.readlines() |
|
for i, text in enumerate(texts): |
|
text = json.loads(text) |
|
if 'metadata' in text: del text['metadata'] |
|
if "title" not in text: text["title"] = "" |
|
yield i, text |