Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Russian
Size:
10K<n<100K
License:
File size: 5,110 Bytes
46ea67b df1f8c6 1e482ba 18841ce 1e482ba 46ea67b df1f8c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
annotations_creators:
- other
language:
- ru
language_creators:
- found
license:
- other
multilinguality:
- monolingual
pretty_name: Collection3
size_categories:
- 10K<n<100K
source_datasets: []
tags: []
task_categories:
- token-classification
task_ids:
- named-entity-recognition
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
splits:
- name: test
num_bytes: 935298
num_examples: 1922
- name: train
num_bytes: 4380588
num_examples: 9301
- name: validation
num_bytes: 1020711
num_examples: 2153
download_size: 878777
dataset_size: 6336597
---
# Dataset Card for Collection3
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Collection3 homepage](http://labinform.ru/pub/named_entities/index.htm)
- **Repository:** [Needs More Information]
- **Paper:** [Two-stage approach in Russian named entity recognition](https://ieeexplore.ieee.org/document/7584769)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Needs More Information]
### Dataset Summary
Collection3 is a Russian dataset for named entity recognition annotated with LOC (location), PER (person), and ORG (organization) tags. Dataset is based on collection [Persons-1000](http://ai-center.botik.ru/Airec/index.php/ru/collections/28-persons-1000) originally containing 1000 news documents labeled only with names of persons.
Additional labels were obtained using guidelines similar to MUC-7 with web-based tool [Brat](http://brat.nlplab.org/) for collaborative text annotation.
Currently dataset contains 26K annotated named entities (11K Persons, 7K Locations and 8K Organizations).
Conversion to the IOB2 format and splitting into train, validation and test sets was done by [DeepPavlov team](http://files.deeppavlov.ai/deeppavlov_data/collection3_v2.tar.gz).
### Supported Tasks and Leaderboards
[Needs More Information]
### Languages
Russian
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
"id": "851",
"ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 2, 0, 0, 0],
"tokens": ['Главный', 'архитектор', 'программного', 'обеспечения', '(', 'ПО', ')', 'американского', 'высокотехнологичного', 'гиганта', 'Microsoft', 'Рэй', 'Оззи', 'покидает', 'компанию', '.']
}
```
### Data Fields
- id: a string feature.
- tokens: a list of string features.
- ner_tags: a list of classification labels (int). Full tagset with indices:
```
{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6}
```
### Data Splits
|name|train|validation|test|
|---------|----:|---------:|---:|
|Collection3|9301|2153|1922|
## Dataset Creation
### Curation Rationale
[Needs More Information]
### Source Data
#### Initial Data Collection and Normalization
[Needs More Information]
#### Who are the source language producers?
[Needs More Information]
### Annotations
#### Annotation process
[Needs More Information]
#### Who are the annotators?
[Needs More Information]
### Personal and Sensitive Information
[Needs More Information]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
[Needs More Information]
### Citation Information
```
@inproceedings{mozharova-loukachevitch-2016-two-stage-russian-ner,
author={Mozharova, Valerie and Loukachevitch, Natalia},
booktitle={2016 International FRUCT Conference on Intelligence, Social Media and Web (ISMW FRUCT)},
title={Two-stage approach in Russian named entity recognition},
year={2016},
pages={1-6},
doi={10.1109/FRUCT.2016.7584769}}
``` |