File size: 27,883 Bytes
831c066 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processing nlx-92431870-9d3d-11ed-9c6a-05e960837f89.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-724565f0-9d3d-11ed-9b2b-fb45fabf3581.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-01862d90-9d3d-11ed-ade0-33dea1872c08.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-e1988b30-9d3d-11ed-9002-73f4e94ec541.wav\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/vit-ap/anaconda3/lib/python3.7/site-packages/torchaudio/functional/functional.py:540: UserWarning: At least one mel filterbank has all zero values. The value for `n_mels` (128) may be set too high. Or, the value for `n_freqs` (201) may be set too low.\n",
" \"At least one mel filterbank has all zero values. \"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-4af2b7a0-9d3d-11ed-8cf7-792f71ad5e87.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-c5144800-9d3d-11ed-8cf7-792f71ad5e87.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-970eaa40-9d3d-11ed-9002-73f4e94ec541.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-20ad0810-9d3d-11ed-8cf7-792f71ad5e87.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-9d1b15f0-9d3c-11ed-aefd-7de9011dbebd.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n",
"Processing nlx-b5db9a60-9d3c-11ed-9c6a-05e960837f89.wav\n",
"Original sample rate: 44100\n",
"Resampled sample rate: 16000\n"
]
}
],
"source": [
"import os\n",
"import torch\n",
"import torchaudio\n",
"\n",
"def preprocess_audio(audio_path):\n",
" # Load the audio file\n",
" waveform, sr = torchaudio.load(audio_path)\n",
"\n",
" # Print original sample rate\n",
" print(f'Original sample rate: {sr}')\n",
"\n",
" # Resample to 16kHz\n",
" if sr != 16000:\n",
" resampler = torchaudio.transforms.Resample(sr, 16000)\n",
" waveform = resampler(waveform)\n",
" sr = 16000\n",
"\n",
" # Print resampled sample rate\n",
" print(f'Resampled sample rate: {sr}')\n",
"\n",
" # Define the normalization and feature extraction transformation\n",
" transform = torchaudio.transforms.MFCC(sample_rate=sr, n_mfcc=40)\n",
"\n",
" # Normalize and extract features from the audio\n",
" mfcc = transform(waveform)\n",
"\n",
" # Prepare the tensor for fine-tuning\n",
" tensor = mfcc.squeeze(0)\n",
" tensor = tensor.transpose(0, 1)\n",
"\n",
" return tensor\n",
"\n",
"path_audio = '/home/vit-ap/Desktop/Navana AI Intern/AudioRecordings'\n",
"\n",
"for filename in os.listdir(path_audio):\n",
" if filename.endswith('.wav'):\n",
" full_path = os.path.join(path_audio, filename)\n",
" print(f'Processing {filename}')\n",
" tensor = preprocess_audio(full_path)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Token is valid.\n",
"\u001b[1m\u001b[31mCannot authenticate through git-credential as no helper is defined on your machine.\n",
"You might have to re-authenticate when pushing to the Hugging Face Hub.\n",
"Run the following command in your terminal in case you want to set the 'store' credential helper as default.\n",
"\n",
"git config --global credential.helper store\n",
"\n",
"Read https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more details.\u001b[0m\n",
"Token has not been saved to git credential helper.\n",
"Your token has been saved to /home/vit-ap/.cache/huggingface/token\n",
"Login successful\n"
]
}
],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1;31mE: \u001b[0mCould not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied)\u001b[0m\r\n",
"\u001b[1;31mE: \u001b[0mUnable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), are you root?\u001b[0m\r\n"
]
}
],
"source": [
"!apt install git-lfs"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in links: https://download.pytorch.org/whl/cu110/torch_stable.html\n",
"Requirement already satisfied: torchaudio in /home/vit-ap/anaconda3/lib/python3.7/site-packages (0.12.1)\n",
"Requirement already satisfied: torch==1.12.1 in /home/vit-ap/anaconda3/lib/python3.7/site-packages (from torchaudio) (1.12.1)\n",
"Requirement already satisfied: typing-extensions in /home/vit-ap/anaconda3/lib/python3.7/site-packages (from torch==1.12.1->torchaudio) (4.3.0)\n",
"\u001b[31mERROR: Could not find a version that satisfies the requirement wav2vec2-gpu (from versions: none)\u001b[0m\n",
"\u001b[31mERROR: No matching distribution found for wav2vec2-gpu\u001b[0m\n",
"Collecting git+https://github.com/pytorch/fairseq\n",
" Cloning https://github.com/pytorch/fairseq to /tmp/pip-req-build-6m2gl03y\n",
" Running command git clone -q https://github.com/pytorch/fairseq /tmp/pip-req-build-6m2gl03y\n",
" Running command git submodule update --init --recursive -q\n",
" Installing build dependencies ... \u001b[?25lerror\n",
"\u001b[31m ERROR: Command errored out with exit status -9:\n",
" command: /home/vit-ap/anaconda3/bin/python /home/vit-ap/anaconda3/lib/python3.7/site-packages/pip install --ignore-installed --no-user --prefix /tmp/pip-build-env-oaw0b2ig/overlay --no-warn-script-location --no-binary :none: --only-binary :none: -i https://pypi.org/simple -- 'setuptools>=18.0' wheel cython 'numpy>=1.21.3' 'torch>=1.10'\n",
" cwd: None\n",
" Complete output (9 lines):\n",
" Collecting setuptools>=18.0\n",
" Using cached setuptools-66.1.1-py3-none-any.whl (1.3 MB)\n",
" Collecting wheel\n",
" Using cached wheel-0.38.4-py3-none-any.whl (36 kB)\n",
" Collecting cython\n",
" Using cached Cython-0.29.33-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (1.9 MB)\n",
" Collecting numpy>=1.21.3\n",
" Using cached numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB)\n",
" Collecting torch>=1.10\n",
" ----------------------------------------\u001b[0m\n",
"\u001b[31mERROR: Command errored out with exit status -9: /home/vit-ap/anaconda3/bin/python /home/vit-ap/anaconda3/lib/python3.7/site-packages/pip install --ignore-installed --no-user --prefix /tmp/pip-build-env-oaw0b2ig/overlay --no-warn-script-location --no-binary :none: --only-binary :none: -i https://pypi.org/simple -- 'setuptools>=18.0' wheel cython 'numpy>=1.21.3' 'torch>=1.10' Check the logs for full command output.\u001b[0m\n",
"\u001b[?25h"
]
}
],
"source": [
"!pip install torchaudio -f https://download.pytorch.org/whl/cu110/torch_stable.html\n",
"!pip install wav2vec2-gpu\n",
"!pip install git+https://github.com/pytorch/fairseq\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"ename": "OSError",
"evalue": "wav2vec2-base is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mHTTPError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/huggingface_hub/utils/_errors.py\u001b[0m in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 263\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 264\u001b[0;31m \u001b[0mresponse\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mraise_for_status\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 265\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mHTTPError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/requests/models.py\u001b[0m in \u001b[0;36mraise_for_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 939\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhttp_error_msg\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 940\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mHTTPError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhttp_error_msg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresponse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 941\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mHTTPError\u001b[0m: 404 Client Error: Not Found for url: https://huggingface.co/wav2vec2-base/resolve/main/config.json",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mRepositoryNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/utils/hub.py\u001b[0m in \u001b[0;36mcached_file\u001b[0;34m(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, use_auth_token, revision, local_files_only, subfolder, user_agent, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash)\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[0muse_auth_token\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0muse_auth_token\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 420\u001b[0;31m \u001b[0mlocal_files_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlocal_files_only\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 421\u001b[0m )\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/huggingface_hub/utils/_validators.py\u001b[0m in \u001b[0;36m_inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 124\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 125\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/huggingface_hub/file_download.py\u001b[0m in \u001b[0;36mhf_hub_download\u001b[0;34m(repo_id, filename, subfolder, repo_type, revision, library_name, library_version, cache_dir, user_agent, force_download, force_filename, proxies, etag_timeout, resume_download, token, local_files_only, legacy_cache_layout)\u001b[0m\n\u001b[1;32m 1108\u001b[0m \u001b[0mproxies\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mproxies\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1109\u001b[0;31m \u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0metag_timeout\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1110\u001b[0m )\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/huggingface_hub/utils/_validators.py\u001b[0m in \u001b[0;36m_inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 124\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 125\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/huggingface_hub/file_download.py\u001b[0m in \u001b[0;36mget_hf_file_metadata\u001b[0;34m(url, token, proxies, timeout)\u001b[0m\n\u001b[1;32m 1439\u001b[0m )\n\u001b[0;32m-> 1440\u001b[0;31m \u001b[0mhf_raise_for_status\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1441\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/huggingface_hub/utils/_errors.py\u001b[0m in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 305\u001b[0m )\n\u001b[0;32m--> 306\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRepositoryNotFoundError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmessage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresponse\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 307\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mRepositoryNotFoundError\u001b[0m: 404 Client Error. (Request ID: Root=1-63d2393f-1eb57d6f7b59d4c0691b41d5)\n\nRepository Not Found for url: https://huggingface.co/wav2vec2-base/resolve/main/config.json.\nPlease make sure you specified the correct `repo_id` and `repo_type`.\nIf you are trying to access a private or gated repo, make sure you are authenticated.",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-29-87607d67bd9c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Load the model and tokenizer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mAutoModelWithLMHead\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"wav2vec2-base\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mtokenizer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mAutoTokenizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"wav2vec2-base\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/models/auto/modeling_auto.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 1252\u001b[0m \u001b[0mFutureWarning\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1253\u001b[0m )\n\u001b[0;32m-> 1254\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmodel_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/models/auto/auto_factory.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *model_args, **kwargs)\u001b[0m\n\u001b[1;32m 437\u001b[0m \u001b[0mtrust_remote_code\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtrust_remote_code\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 438\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mhub_kwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 439\u001b[0;31m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 440\u001b[0m )\n\u001b[1;32m 441\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"auto_map\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mauto_map\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/models/auto/configuration_auto.py\u001b[0m in \u001b[0;36mfrom_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 850\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"name_or_path\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 851\u001b[0m \u001b[0mtrust_remote_code\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"trust_remote_code\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 852\u001b[0;31m \u001b[0mconfig_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munused_kwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPretrainedConfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_config_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 853\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m\"auto_map\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mconfig_dict\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;34m\"AutoConfig\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mconfig_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"auto_map\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 854\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mtrust_remote_code\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/configuration_utils.py\u001b[0m in \u001b[0;36mget_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 563\u001b[0m \u001b[0moriginal_kwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeepcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 564\u001b[0m \u001b[0;31m# Get config dict associated with the base config file\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 565\u001b[0;31m \u001b[0mconfig_dict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_config_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpretrained_model_name_or_path\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 566\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m\"_commit_hash\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mconfig_dict\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 567\u001b[0m \u001b[0moriginal_kwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"_commit_hash\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconfig_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"_commit_hash\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/configuration_utils.py\u001b[0m in \u001b[0;36m_get_config_dict\u001b[0;34m(cls, pretrained_model_name_or_path, **kwargs)\u001b[0m\n\u001b[1;32m 630\u001b[0m \u001b[0mrevision\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrevision\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 631\u001b[0m \u001b[0msubfolder\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msubfolder\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 632\u001b[0;31m \u001b[0m_commit_hash\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcommit_hash\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 633\u001b[0m )\n\u001b[1;32m 634\u001b[0m \u001b[0mcommit_hash\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mextract_commit_hash\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresolved_config_file\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcommit_hash\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/transformers/utils/hub.py\u001b[0m in \u001b[0;36mcached_file\u001b[0;34m(path_or_repo_id, filename, cache_dir, force_download, resume_download, proxies, use_auth_token, revision, local_files_only, subfolder, user_agent, _raise_exceptions_for_missing_entries, _raise_exceptions_for_connection_errors, _commit_hash)\u001b[0m\n\u001b[1;32m 423\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mRepositoryNotFoundError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 424\u001b[0m raise EnvironmentError(\n\u001b[0;32m--> 425\u001b[0;31m \u001b[0;34mf\"{path_or_repo_id} is not a local folder and is not a valid model identifier \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 426\u001b[0m \u001b[0;34m\"listed on 'https://huggingface.co/models'\\nIf this is a private repository, make sure to \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 427\u001b[0m \u001b[0;34m\"pass a token having permission to this repo with `use_auth_token` or log in with \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mOSError\u001b[0m: wav2vec2-base is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having permission to this repo with `use_auth_token` or log in with `huggingface-cli login` and pass `use_auth_token=True`."
]
}
],
"source": [
"import torch\n",
"from transformers import AutoModelWithLMHead, AutoTokenizer\n",
"\n",
"\n",
"# Load the model and tokenizer\n",
"model = AutoModelWithLMHead.from_pretrained(\"wav2vec2-base\")\n",
"tokenizer = AutoTokenizer.from_pretrained(\"wav2vec2-base\")\n",
"\n",
"# Move the model to the CPU\n",
"model.to(\"cpu\")\n",
"\n",
"# Set the model in evaluation mode\n",
"model.eval()\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/vit-ap/anaconda3/lib/python3.7/site-packages/transformers/models/auto/modeling_auto.py:1252: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
" FutureWarning,\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model wav2vec2-base is not available.\n"
]
}
],
"source": [
"from transformers import pipeline, AutoModelWithLMHead\n",
"\n",
"MODEL_NAME = \"wav2vec2-base\"\n",
"try:\n",
" model = AutoModelWithLMHead.from_pretrained(MODEL_NAME)\n",
" print(f\"Model {MODEL_NAME} is available.\")\n",
"except:\n",
" print(f\"Model {MODEL_NAME} is not available.\")"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model wav2vec2-base is not available.\n"
]
}
],
"source": [
"from transformers import pipeline, AutoModelWithLMHead\n",
"\n",
"MODEL_NAME = \"wav2vec2-base\"\n",
"try:\n",
" model = AutoModelWithLMHead.from_pretrained(MODEL_NAME)\n",
" print(f\"Model {MODEL_NAME} is available.\")\n",
"except:\n",
" print(f\"Model {MODEL_NAME} is not available.\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|