File size: 4,120 Bytes
02e8cc7 df0f3a2 caed78f bb7b387 df0f3a2 bb7b387 02e8cc7 d7d4f95 02e8cc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import datasets
import json
import os
import sys
dl = datasets.DownloadManager()
configs_file = dl.download('https://huggingface.co/datasets/RealTimeData/bbc_alltime/raw/main/configs.txt')
with open(configs_file, encoding="utf-8") as f:
_TIMES = f.read().splitlines()
_CITATION = """\
@misc{li2023estimating,
title={Estimating Contamination via Perplexity: Quantifying Memorisation in Language Model Evaluation},
author={Yucheng Li},
year={2023},
eprint={2309.10677},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
This dataset contains BBC News articles from 2017 to 2022. The articles are arraged by month. Access the specific month by using the format "YYYY-MM" as config. Such as load_dataset("RealTimeData/bbc_alltime", "2021-1").
"""
_HOMEPAGE = "https://github.com/liyucheng09/Contamination_Detector"
class Bbc_alltimes(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=time, version=datasets.Version("1.0.0"), description=f"BBC News articles published in the priod of {time}"
)
for time in _TIMES
]
def _info(self):
features = datasets.Features(
{
"title": datasets.Value("string"),
"published_date": datasets.Value("string"),
"authors": datasets.Value("string"),
"description": datasets.Value("string"),
"section": datasets.Value("string"),
"content": datasets.Value("string"),
"link": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "all":
times = _TIMES[:-1]
files = dl_manager.download([f"articles/{time}.json" for time in _TIMES ])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": files},
)
]
else:
time = self.config.name
_URL = f"articles/{time}.json"
file = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": file},
)
]
def _generate_examples(self, files):
"""Yields examples."""
if self.config.name == "all":
assert isinstance(files, list)
for file in files:
time = file.strip('.json')
with open(file, encoding="utf-8") as f:
data = json.load(f)
length = len(data['title'])
for i in range(length):
yield f'{time}-{i}', {
"title": data['title'][i],
"published_date": data['published_date'][i],
"authors": data['authors'][i],
"description": data['description'][i],
"section": data['section'][i],
"content": data['content'][i],
"link": data['link'][i],
}
else:
assert isinstance(files, str)
time = self.config.name
with open(files, encoding="utf-8") as f:
data = json.load(f)
length = len(data['title'])
for i in range(length):
yield f'{time}-{i}', {
"title": data['title'][i],
"published_date": data['published_date'][i],
"authors": data['authors'][i],
"description": data['description'][i],
"section": data['section'][i],
"content": data['content'][i],
"link": data['link'][i],
} |