bbc_alltime / bbc_alltime.py
liyucheng's picture
Create bbc_alltime.py
02e8cc7
raw
history blame
4.62 kB
import datasets
import json
_CITATION = """\
@misc{li2023estimating,
title={Estimating Contamination via Perplexity: Quantifying Memorisation in Language Model Evaluation},
author={Yucheng Li},
year={2023},
eprint={2309.10677},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
This dataset contains BBC News articles from 2017 to 2022. The articles are arraged by month. Access the specific month by using the format "YYYY-MM" as config. Such as load_dataset("RealTimeData/bbc_alltime", "2021-1").
"""
_HOMEPAGE = "https://github.com/liyucheng09/Contamination_Detector"
_TIMES = ["2017-10", "2017-11", "2017-12", "2017-1", "2017-2", "2017-3", "2017-4", "2017-5", "2017-6", "2017-7", "2017-8", "2017-9", "2018-10", "2018-11", "2018-12", "2018-1", "2018-2", "2018-3", "2018-4", "2018-5", "2018-6", "2018-7", "2018-8", "2018-9", "2019-10", "2019-11", "2019-12", "2019-1", "2019-2", "2019-3", "2019-4", "2019-5", "2019-6", "2019-7", "2019-8", "2019-9", "2020-10", "2020-11", "2020-12", "2020-1", "2020-2", "2020-3", "2020-4", "2020-5", "2020-6", "2020-7", "2020-8", "2020-9", "2021-10", "2021-11", "2021-12", "2021-1", "2021-2", "2021-3", "2021-4", "2021-5", "2021-6", "2021-7", "2021-8", "2021-9", "2022-10", "2022-11", "2022-12", "2022-1", "2022-2", "2022-3", "2022-4", "2022-5", "2022-6", "2022-7", "2022-8", "2022-9", "all"]
class Bbc_alltimes(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=time, version=datasets.Version("1.0.0"), description=f"BBC News articles published in the priod of {time}"
)
for time in _TIMES
]
def _info(self):
features = datasets.Features(
{
"title": datasets.Value("string"),
"published_date": datasets.Value("string"),
"authors": datasets.Value("string"),
"description": datasets.Value("string"),
"section": datasets.Value("string"),
"content": datasets.Value("string"),
"link": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "all":
times = _TIMES[:-1]
files = dl_manager.download_and_extract('all_articles.zip')
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": files},
)
]
else:
time = self.config.name
_URL = f"articles/{time}.json"
file = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": file},
)
]
def _generate_examples(self, files):
"""Yields examples."""
if self.config.name == "all":
assert isinstance(files, list)
for file in files:
time = file.strip('.json')
with open(file, encoding="utf-8") as f:
data = json.load(f)
length = len(data['title'])
for i in range(length):
yield f'{time}-{i}', {
"title": data['title'][i],
"published_date": data['published_date'][i],
"authors": data['authors'][i],
"description": data['description'][i],
"section": data['section'][i],
"content": data['content'][i],
"link": data['link'][i],
}
else:
assert isinstance(files, str)
time = self.config.name
with open(files, encoding="utf-8") as f:
data = json.load(f)
length = len(data['title'])
for i in range(length):
yield f'{time}-{i}', {
"title": data['title'][i],
"published_date": data['published_date'][i],
"authors": data['authors'][i],
"description": data['description'][i],
"section": data['section'][i],
"content": data['content'][i],
"link": data['link'][i],
}