import os import re import pandas as pd import datasets # _CITATION = """\ # @article{ponomarenko_tid2008_2009, # author = {Ponomarenko, Nikolay and Lukin, Vladimir and Zelensky, Alexander and Egiazarian, Karen and Astola, Jaakko and Carli, Marco and Battisti, Federica}, # title = {{TID2008} -- {A} {Database} for {Evaluation} of {Full}- {Reference} {Visual} {Quality} {Assessment} {Metrics}}, # year = {2009} # } # """ _DESCRIPTION = """""" _HOMEPAGE = "" _REPO = "" # _LICENSE = "" class IlluminantConfig(datasets.BuilderConfig): """BuilderConfig for IlluminantChanges.""" def __init__(self, data_url, **kwargs): """BuilderConfig for Imagette. Args: data_url: `string`, url to download the zip file from. matadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs **kwargs: keyword arguments forwarded to super. """ super(IlluminantConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.data_url = data_url class Databases_IlluminantChanges(datasets.GeneratorBasedBuilder): """""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ IlluminantConfig( name="MNIST", description="MNIST data", data_url=f"./MNIST.zip", ), IlluminantConfig( name="CIFAR", description="CIFAR data", data_url=f"./CIFAR.zip", ), IlluminantConfig( name="Imagenet", description="Imagenet data", data_url=f"./Imagenet.zip", ), IlluminantConfig( name="TID13", description="TID13 data", data_url=f"./TID13.zip", ), ] def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { # "images": datasets.Image(), "reference": datasets.Image(), "distorted": datasets.Image(), # "mos": datasets.Value("float") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # supervised_keys=("reference", "distorted", "mos"), homepage=_HOMEPAGE, # license=_LICENSE, # citation=_CITATION, ) def _split_generators(self, dl_manager): archive_path = dl_manager.download(self.config.data_url) # print(f"Data url: {self.config.data_url} | {archive_path}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": dl_manager.download_and_extract(archive_path), "split": "train", }, ) ] def _generate_examples(self, images, split): desat_path = os.path.join(images, self.config.name, "Desat") illum_path = os.path.join(images, self.config.name, "Illum") illum_paths = [os.path.join(illum_path, p) for p in os.listdir(illum_path)] ## Get the correct desat image for each illum image img_numbers = [re.findall("im_(\d+)_tono_\d+_sat_\d+.png", p)[0] for p in illum_paths] desat_paths = [os.path.join(desat_path, f"im_orig_desat{n}.png") for n in img_numbers] # print(desat_paths[0], illum_paths[0]) for key, (desat, illum) in enumerate(zip(desat_paths, illum_paths)): yield key, { "reference": desat, "distorted": illum, }