frihetstidens_utskottshandlingar / frihetstidens_utskottshandlingar.py
Sneriko's picture
Update frihetstidens_utskottshandlingar.py
2cefdca verified
# ladda upp datasetet i en zip av imgs och en zip av xml, skapa flera archive iterators och använd dom (men hur blir det med ordningen?)
import os
import xml.etree.ElementTree as ET
from glob import glob
from pathlib import Path, PurePath
import cv2
import numpy as np
from datasets import (
BuilderConfig,
DatasetInfo,
Features,
GeneratorBasedBuilder,
Image,
Split,
SplitGenerator,
Value,
)
from PIL import Image as PILImage
class HTRDatasetConfig(BuilderConfig):
"""BuilderConfig for HTRDataset"""
def __init__(self, **kwargs):
super(HTRDatasetConfig, self).__init__(**kwargs)
class HTRDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
HTRDatasetConfig(
name="htr_dataset",
version="1.0.0",
description="Line dataset for text recognition of historical swedish",
)
]
def _info(self):
features = Features({"unique_key": Value("string"), "image": Image(), "transcription": Value("string")})
return DatasetInfo(features=features)
def _split_generators(self, dl_manager):
"""
images = dl_manager.download_and_extract(
[
f"https://huggingface.co/datasets/Riksarkivet/alvsborgs_losen/resolve/main/data/images/alvsborgs_losen_imgs_{i}.tar.gz"
for i in range(1, 3)
]
)
xmls = dl_manager.download_and_extract(
[
f"https://huggingface.co/datasets/Riksarkivet/alvsborgs_losen/resolve/main/data/page_xmls/alvsborgs_losen_page_xmls_{i}.tar.gz"
for i in range(1, 3)
]
)
"""
images = dl_manager.download_and_extract(
[
f"https://huggingface.co/datasets/Riksarkivet/frihetstidens_utskottshandlingar/resolve/main/data/images/frihetstidens_utskottshandlingar_images_{i}.tar.gz"
for i in range(1, 3)
]
)
xmls = dl_manager.download_and_extract(
[
f"https://huggingface.co/datasets/Riksarkivet/frihetstidens_utskottshandlingar/resolve/main/data/page_xmls/frihetstidens_utskottshandlingar_page_xmls_{i}.tar.gz"
for i in range(1, 3)
]
)
image_extensions = [
"*.jpg",
"*.jpeg",
"*.png",
"*.gif",
"*.bmp",
"*.tif",
"*.tiff",
"*.JPG",
"*.JPEG",
"*.PNG",
"*.GIF",
"*.BMP",
"*.TIF",
"*.TIFF",
]
imgs_nested = [glob(os.path.join(x, "**", ext), recursive=True) for ext in image_extensions for x in images]
imgs_flat = [item for sublist in imgs_nested for item in sublist]
sorted_imgs = sorted(imgs_flat, key=lambda x: Path(x).stem)
xmls_nested = [glob(os.path.join(x, "**", "*.xml"), recursive=True) for x in xmls]
xmls_flat = [item for sublist in xmls_nested for item in sublist]
sorted_xmls = sorted(xmls_flat, key=lambda x: Path(x).stem)
assert len(sorted_imgs) == len(sorted_xmls)
imgs_xmls = []
for img, xml in zip(sorted_imgs, sorted_xmls):
imgs_xmls.append((img, xml))
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={"imgs_xmls": imgs_xmls},
)
]
def _generate_examples(self, imgs_xmls):
for img, xml in imgs_xmls:
assert Path(img).stem == Path(xml).stem
img_filename = Path(img).stem
volume = PurePath(img).parts[-2]
lines_data = self.parse_pagexml(xml)
# Convert the bytes to a NumPy array
image_array = cv2.imread(img)
for i, line in enumerate(lines_data):
line_id = str(i).zfill(4)
try:
cropped_image = self.crop_line_image(image_array, line["coords"])
except Exception as e:
print(e)
continue
# Logging to ensure data types and shapes
cropped_image_np = np.array(cropped_image, dtype=np.uint8)
# Ensure transcription is a string and not None
transcription = str(line["transcription"])
if transcription is None or not isinstance(transcription, str) or transcription == "":
print(f"Invalid transcription: {transcription}")
continue
# Generate and log the unique key
unique_key = f"{volume}_{img_filename}_{line_id}"
try:
yield (
unique_key,
{"unique_key": unique_key, "image": cropped_image, "transcription": transcription},
)
except Exception as e:
print(f"Error yielding example {unique_key}: {e}")
def parse_pagexml(self, xml):
try:
tree = ET.parse(xml)
root = tree.getroot()
except ET.ParseError as e:
print(e)
return []
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
page = root.find("ns:Page", namespaces)
if page is None:
print("no page")
return []
text_regions = page.findall("ns:TextRegion", namespaces)
lines_data = []
for region in text_regions:
lines = region.findall("ns:TextLine", namespaces)
for line in lines:
try:
line_id = line.get("id")
coords = line.find("ns:Coords", namespaces).get("points")
coords = [tuple(map(int, p.split(","))) for p in coords.split()]
transcription = line.find("ns:TextEquiv/ns:Unicode", namespaces).text
lines_data.append({"line_id": line_id, "coords": coords, "transcription": transcription})
except Exception as e:
print(e)
continue
return lines_data
def crop_line_image(self, img, coords):
coords = np.array(coords)
# img = HTRDataset.np_to_cv2(image)
mask = np.zeros(img.shape[0:2], dtype=np.uint8)
try:
cv2.drawContours(mask, [coords], -1, (255, 255, 255), -1, cv2.LINE_AA)
except Exception as e:
print(e)
res = cv2.bitwise_and(img, img, mask=mask)
rect = cv2.boundingRect(coords)
wbg = np.ones_like(img, np.uint8) * 255
cv2.bitwise_not(wbg, wbg, mask=mask)
# overlap the resulted cropped image on the white background
dst = wbg + res
cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]]
cropped = HTRDataset.cv2_to_pil(cropped)
return cropped
def np_to_cv2(image_array):
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image_rgb
# Convert OpenCV image to PIL Image
def cv2_to_pil(cv2_image):
# Convert BGR to RGB
cv2_image_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
# Convert NumPy array to PIL image
pil_image = PILImage.fromarray(cv2_image_rgb)
return pil_image