--- license: mit dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 129624 num_examples: 10000 - name: validation_top1 num_bytes: 10754 num_examples: 1000 - name: test_top1 num_bytes: 10948 num_examples: 1000 - name: validation_1_10 num_bytes: 11618 num_examples: 1000 - name: test_1_10 num_bytes: 11692 num_examples: 1000 - name: validation_10_20 num_bytes: 13401 num_examples: 1000 - name: test_10_20 num_bytes: 13450 num_examples: 1000 - name: validation_20_30 num_bytes: 15112 num_examples: 1000 - name: test_20_30 num_bytes: 15069 num_examples: 1000 - name: validation_bottom50 num_bytes: 15204 num_examples: 1000 - name: test_bottom50 num_bytes: 15076 num_examples: 1000 download_size: 241234 dataset_size: 261948 language: - en --- # WikiSpell ## Description This dataset is a **custom implementation** of the WikiSpell dataset introduced in [Character-Aware Models Improve Visual Text Rendering](https://arxiv.org/pdf/2212.10562.pdf) by Liu et al. (2022). Similarly to the original WikiSpell dataset, the training set is composed of 5000 words taken uniformly from the 50% least common Wiktionary words, and 5000 words sampled according to their frequencies taken from the 50% most common Wiktionary words. Contrary to the original Wiktionary, we compute the frequency of the words using the first 100k sentences from OpenWebText ([Skylion007/openwebtext](https://huggingface.co/datasets/Skylion007/openwebtext)) instead of mC4. ## Usage This dataset is used for testing spelling in Large Language Models. To do so, the labels should be computed using the following: ```python sample = ds["train"][0] label = " ".join(sample["text"]) ``` **They are not included in the dataset.** ## Citation Please cite the original paper introducing WikiSpell if you're using this dataset: ``` @inproceedings{liu-etal-2023-character, title = "Character-Aware Models Improve Visual Text Rendering", author = "Liu, Rosanne and Garrette, Dan and Saharia, Chitwan and Chan, William and Roberts, Adam and Narang, Sharan and Blok, Irina and Mical, Rj and Norouzi, Mohammad and Constant, Noah", booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2023", address = "Toronto, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.acl-long.900", pages = "16270--16297", } ```