|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{kratochvil-morgado-da-costa-2022-abui, |
|
title = "{A}bui {W}ordnet: Using a Toolbox Dictionary to develop a wordnet for a low-resource language", |
|
author = "Kratochvil, Frantisek and |
|
Morgado da Costa, Lu{\'}s", |
|
editor = "Serikov, Oleg and |
|
Voloshina, Ekaterina and |
|
Postnikova, Anna and |
|
Klyachko, Elena and |
|
Neminova, Ekaterina and |
|
Vylomova, Ekaterina and |
|
Shavrina, Tatiana and |
|
Ferrand, Eric Le and |
|
Malykh, Valentin and |
|
Tyers, Francis and |
|
Arkhangelskiy, Timofey and |
|
Mikhailov, Vladislav and |
|
Fenogenova, Alena", |
|
booktitle = "Proceedings of the first workshop on NLP applications to field linguistics", |
|
month = oct, |
|
year = "2022", |
|
address = "Gyeongju, Republic of Korea", |
|
publisher = "International Conference on Computational Linguistics", |
|
url = "https://aclanthology.org/2022.fieldmatters-1.7", |
|
pages = "54--63", |
|
abstract = "This paper describes a procedure to link a Toolbox dictionary of a low-resource language to correct |
|
synsets, generating a new wordnet. We introduce a bootstrapping technique utilising the information in the gloss |
|
fields (English, national, and regional) to generate sense candidates using a naive algorithm based on |
|
multilingual sense intersection. We show that this technique is quite effective when glosses are available in |
|
more than one language. Our technique complements the previous work by Rosman et al. (2014) which linked the |
|
SIL Semantic Domains to wordnet senses. Through this work we have created a small, fully hand-checked wordnet |
|
for Abui, containing over 1,400 concepts and 3,600 senses.", |
|
} |
|
""" |
|
_DATASETNAME = "abui_wordnet" |
|
_DESCRIPTION = """\ |
|
A small fully hand-checked wordnet for Abui, containing over 1,400 concepts and 3,600 senses, is created. A |
|
bootstrapping technique is introduced to utilise the information in the gloss fields (English, national, and regional) |
|
to generate sense candidates using a naive algorithm based on multilingual sense intersection. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/fanacek/abuiwn" |
|
_LANGUAGES = ["abz"] |
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
_LOCAL = False |
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/fanacek/abuiwn/main/abwn_lmf.tsv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.WORD_ANALOGY] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class AbuiwordnetDataset(datasets.GeneratorBasedBuilder): |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=_DESCRIPTION, |
|
schema="source", |
|
subset_id="abui_wordnet", |
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = None |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sense": datasets.Value("string"), |
|
"pos": datasets.Value("string"), |
|
"lang": datasets.Value("string"), |
|
"lemma": datasets.Value("string"), |
|
"form": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_pair": |
|
features = schemas.pairs_features |
|
raise NotImplementedError() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name="senses", |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
with open(filepath, "r") as filein: |
|
data_instances = [inst.strip("\n").split("\t") for inst in filein.readlines()] |
|
if self.config.schema == "source": |
|
for idx, example in enumerate(data_instances): |
|
sense = example[0] |
|
pos = example[0][-1] |
|
lang = example[1] |
|
lemma = example[2] |
|
form = "" if len(example) == 3 else example[3] |
|
yield idx, { |
|
"sense": sense, |
|
"pos": pos, |
|
"lang": lang, |
|
"lemma": lemma, |
|
"form": form, |
|
} |
|
|
|
|
|
|