|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This is an automatically-produced question answering dataset \ |
|
generated from Indonesian Wikipedia articles. Each entry \ |
|
in the dataset consists of a context paragraph, the \ |
|
question and answer, and the question's equivalent SPARQL \ |
|
query. Questions are separated into two subsets: simple \ |
|
(question consists of a single SPARQL triple pattern) and \ |
|
complex (question consists of two triples plus an optional \ |
|
typing triple). |
|
""" |
|
import json |
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{afa5bf8149d6406786539c1ea827087d, |
|
title = "AC-IQuAD: Automatically Constructed Indonesian Question Answering Dataset by Leveraging Wikidata", |
|
abstract = "Constructing a question-answering dataset can be prohibitively expensive, making it difficult for researchers |
|
to make one for an under-resourced language, such as Indonesian. We create a novel Indonesian Question Answering dataset |
|
that is produced automatically end-to-end. The process uses Context Free Grammar, the Wikipedia Indonesian Corpus, and |
|
the concept of the proxy model. The dataset consists of 134 thousand simple questions and 60 thousand complex questions. |
|
It achieved competitive grammatical and model accuracy compared to the translated dataset but suffers from some issues |
|
due to resource constraints.", |
|
keywords = "Automatic dataset construction, Question answering dataset, Under-resourced Language", |
|
author = "Kerenza Doxolodeo and Krisnadhi, {Adila Alfa}", |
|
note = "Publisher Copyright: {\textcopyright} 2024, The Author(s).", |
|
year = "2024", |
|
doi = "10.1007/s10579-023-09702-y", |
|
language = "English", |
|
journal = "Language Resources and Evaluation", |
|
issn = "1574-020X", |
|
publisher = "Springer Netherlands", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "ac_iquad" |
|
|
|
_DESCRIPTION = """ |
|
This is an automatically-produced question answering dataset \ |
|
generated from Indonesian Wikipedia articles. Each entry \ |
|
in the dataset consists of a context paragraph, the \ |
|
question and answer, and the question's equivalent SPARQL \ |
|
query. Questions are separated into two subsets: simple \ |
|
(question consists of a single SPARQL triple pattern) and \ |
|
complex (question consists of two triples plus an optional \ |
|
typing triple). |
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/datasets/realdeo/indonesian-qa-generated-by-kg" |
|
|
|
_LANGUAGES = ["ind"] |
|
|
|
_LICENSE = Licenses.CC_BY_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/muhammadravi251001/ac-iquad/raw/main/data/ac_iquad.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ACIQuADDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
This is an automatically-produced question answering dataset \ |
|
generated from Indonesian Wikipedia articles. Each entry \ |
|
in the dataset consists of a context paragraph, the \ |
|
question and answer, and the question's equivalent SPARQL \ |
|
query. Questions are separated into two subsets: simple \ |
|
(question consists of a single SPARQL triple pattern) and \ |
|
complex (question consists of two triples plus an optional \ |
|
typing triple). |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "qa" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_simple_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_simple", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_simple_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_simple", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_complex_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_complex", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_complex_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_complex", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_simple_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features_dict = { |
|
"question": datasets.Value("string"), |
|
"sparql": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"answerline": datasets.Value("string"), |
|
} |
|
|
|
if self.config.subset_id.split("_")[2] == "complex": |
|
features_dict["type"] = datasets.Value("string") |
|
|
|
features = datasets.Features(features_dict) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.qa_features |
|
|
|
if self.config.subset_id.split("_")[2] == "complex": |
|
features["meta"] = {"sparql": datasets.Value("string"), "answer_meta": datasets.Value("string"), "type": datasets.Value("string")} |
|
|
|
else: |
|
features["meta"] = {"sparql": datasets.Value("string"), "answer_meta": datasets.Value("string")} |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
subset = self.config.name.split("_")[2] |
|
data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME]) |
|
|
|
if subset == "simple": |
|
subset = "single" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, f"{subset}_train.json"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, f"{subset}_test.json"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, "r", encoding="utf-8") as file: |
|
data_json = json.load(file) |
|
|
|
df = pd.json_normalize(data_json) |
|
|
|
for index, row in df.iterrows(): |
|
|
|
if self.config.schema == "source": |
|
example = row.to_dict() |
|
|
|
if self.config.subset_id.split("_")[2] == "complex": |
|
example["type"] = example.pop("tipe", None) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
|
|
subset = self.config.name.split("_")[2] |
|
if subset == "simple": |
|
row["answerline"] = f"[{row['answerline']}]" |
|
|
|
example = { |
|
"id": str(index), |
|
"question_id": "question_id", |
|
"document_id": "document_id", |
|
"question": row["question"], |
|
"type": "extractive", |
|
"choices": [], |
|
"context": row["context"], |
|
"answer": eval(row["answerline"]), |
|
"meta": {"sparql": row["sparql"], "answer_meta": row["answer"]}, |
|
} |
|
|
|
if self.config.subset_id.split("_")[2] == "complex": |
|
example["meta"]["type"] = row["tipe"] |
|
|
|
yield index, example |
|
|