File size: 11,423 Bytes
e824569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres
ranging from Experiment or task, Stimuli, Discourse, and Written materials.
"""
import xml.etree.ElementTree as ET
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.sea_datasets.alorese.alorese_url import _URLS_DICT
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{Moro2018-ms,
title = "The plural word hire in alorese: Contact-induced change from
neighboring Alor-pantar languages",
author = "Moro, Francesca R",
journal = "Oceanic Linguistics",
publisher = "University of Hawai'i Press",
volume = 57,
number = 1,
pages = "177--198",
year = 2018,
language = "en"
}
"""
_DATASETNAME = "alorese"
_DESCRIPTION = """\
Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres
ranging from Experiment or task, Stimuli, Discourse, and Written materials.
"""
_HOMEPAGE = "https://hdl.handle.net/1839/e10d7de5-0a6d-4926-967b-0a8cc6d21fb1"
_LANGUAGES = ["aol", "ind"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = _URLS_DICT
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class AloreseDataset(datasets.GeneratorBasedBuilder):
"""Alorese Corpus is a collection of language data in a couple of Alorese variation (Alor and Pantar Alorese). The collection is available in video, audio, and text formats with genres ranging
from Experiment or task, Stimuli, Discourse, and Written materials."""
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}"
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_t2t",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd for text2text schema",
schema="seacrowd_t2t",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd for sptext schema",
schema="seacrowd_sptext",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"nr": datasets.Value("int64"),
"media_id": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16000),
"annotation_aol": datasets.Value("string"),
"annotation_ind": datasets.Value("string"),
"begin_time": datasets.Value("int64"),
"end_time": datasets.Value("int64"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
else:
raise ValueError(f"Invalid config schema: {self.config.schema}")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
if self.config.schema == "seacrowd_t2t":
filepath = {k: v["text_path"] for k, v in _URLS.items()}
paths = dl_manager.download(filepath)
else:
paths = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": paths,
},
),
]
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
if self.config.schema == "source":
source_df = self._get_source_df(filepath)
for k, row in source_df.iterrows():
yield k, {
"nr": k + 1,
"media_id": row["media_id"],
"speaker_id": row["speaker_id"],
"audio": row["audio_path"],
"annotation_aol": row["annotation_aol"],
"annotation_ind": row["annotation_ind"],
"begin_time": row["begin_time"],
"end_time": row["end_time"],
}
elif self.config.schema == "seacrowd_t2t":
caption_df = self._merge_text_dfs(filepath)
for k, row in caption_df.iterrows():
yield k, {
"id": k + 1,
"text_1": row["annotation_aol"],
"text_2": row["annotation_ind"],
"text_1_name": _LANGUAGES[0],
"text_2_name": _LANGUAGES[1],
}
elif self.config.schema == "seacrowd_sptext":
sptext_df = self._get_sptext_df(filepath)
for k, row in sptext_df.iterrows():
yield k, {
"id": k + 1,
"path": row["audio_path"],
"audio": row["audio_path"],
"text": row["annotation_aol"],
"speaker_id": row["speaker_id"],
"metadata": {
"speaker_age": None,
"speaker_gender": None
}}
def _get_time_df(self, xml_tree) -> pd.DataFrame:
time_slot_values = [(time_slot.attrib["TIME_SLOT_ID"], int(time_slot.attrib["TIME_VALUE"])) for time_slot in xml_tree.iter(tag="TIME_SLOT")]
return pd.DataFrame({"time_slot_id": [v[0] for v in time_slot_values], "time_value": [v[1] for v in time_slot_values]})
def _get_aol_annotations(self, xml_tree) -> pd.DataFrame:
aol_annotations = [(annotation.attrib["ANNOTATION_ID"], annotation.attrib["TIME_SLOT_REF1"], annotation.attrib["TIME_SLOT_REF2"], annotation.find("ANNOTATION_VALUE").text) for annotation in xml_tree.iter(tag="ALIGNABLE_ANNOTATION")]
return pd.DataFrame({"annotation_id": [v[0] for v in aol_annotations], "time_slot_ref1": [v[1] for v in aol_annotations], "time_slot_ref2": [v[2] for v in aol_annotations], "annotation_value": [v[3] for v in aol_annotations]})
def _get_ind_annotations(self, xml_tree) -> pd.DataFrame:
ind_annotations = [(annotation.attrib["ANNOTATION_ID"], annotation.attrib["ANNOTATION_REF"], annotation.find("ANNOTATION_VALUE").text) for annotation in xml_tree.iter(tag="REF_ANNOTATION")]
return pd.DataFrame({"annotation_id": [v[0] for v in ind_annotations], "annotation_ref_id": [v[1] for v in ind_annotations], "annotation_value": [v[2] for v in ind_annotations]})
def _get_text_df(self, xml_tree) -> pd.DataFrame:
time_df = self._get_time_df(xml_tree)
aol_df = self._get_aol_annotations(xml_tree)
ind_df = self._get_ind_annotations(xml_tree)
df1 = aol_df.merge(time_df, left_on="time_slot_ref1", right_on="time_slot_id", how="left").rename(columns={"time_value": "begin_time", "annotation_value": "annotation_aol"}).drop(columns=["time_slot_ref1", "time_slot_id"])
df2 = df1.merge(time_df, left_on="time_slot_ref2", right_on="time_slot_id", how="left").rename(columns={"time_value": "end_time"}).drop(columns=["time_slot_ref2", "time_slot_id"])
final_df = df2.merge(ind_df, left_on="annotation_id", right_on="annotation_ref_id", how="left").rename(columns={"annotation_value": "annotation_ind"}).drop(columns=["annotation_ref_id", "annotation_id_y", "annotation_id_x"])
return final_df[["annotation_aol", "annotation_ind", "begin_time", "end_time"]]
def _merge_text_dfs(self, xml_dict) -> pd.DataFrame:
final_df = pd.DataFrame()
len_tracker = []
media_ids = []
xml_trees = [ET.parse(xml_path) for xml_path in xml_dict.values()]
for xml_tree in xml_trees:
cur_df = self._get_text_df(xml_tree)
final_df = pd.concat([final_df, cur_df], axis=0)
len_tracker.append(len(cur_df))
media_id_list = list(xml_dict.keys())
for i in range(len(len_tracker)):
media_ids.extend([media_id_list[i]] * len_tracker[i])
final_df["media_id"] = media_ids
return final_df.reset_index()
def _groupby_caption_by_media_ids(self, caption_df: pd.DataFrame) -> pd.DataFrame:
caption_df = (
caption_df.groupby("media_id")
.agg({"annotation_aol": lambda x: " ".join([str(value) if value is not None else "<NONE>" for value in x]), "annotation_ind": lambda x: " ".join([str(value) if value is not None else "<NONE>" for value in x])})
.reset_index()
)
return caption_df
def _get_sptext_df(self, complete_dict) -> pd.DataFrame:
xml_dict = {k: v["text_path"] for k, v in complete_dict.items()}
audio_df = pd.DataFrame({"media_id": [k for k in complete_dict.keys()], "speaker_id": [k.split("_")[-1] for k in complete_dict.keys()], "audio_path": [v["audio_path"] for v in complete_dict.values()]})
caption_df = self._groupby_caption_by_media_ids(self._merge_text_dfs(xml_dict))
df = caption_df.merge(audio_df, on="media_id", how="inner")
return df[["media_id", "speaker_id", "audio_path", "annotation_aol", "annotation_ind"]]
def _get_source_df(self, complete_dict) -> pd.DataFrame:
xml_dict = {k: v["text_path"] for k, v in complete_dict.items()}
audio_df = pd.DataFrame({"media_id": [k for k in complete_dict.keys()], "speaker_id": [k.split("_")[-1] for k in complete_dict.keys()], "audio_path": [v["audio_path"] for v in complete_dict.values()]})
text_df = self._merge_text_dfs(xml_dict)
df = text_df.merge(audio_df, on="media_id", how="inner")
return df[["media_id", "speaker_id", "audio_path", "annotation_aol", "annotation_ind", "begin_time", "end_time"]]
|