Datasets:

Languages:
Indonesian
ArXiv:
License:
audio_keyword_spotting / audio_keyword_spotting.py
holylovenia's picture
Upload audio_keyword_spotting.py with huggingface_hub
214cdcd verified
raw
history blame
7.87 kB
"""
SEA Crowd Data Loader for Audio Keyword Spotting.
"""
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
# since the dataset doesn't have any citation and it was derived using someone else's work, this citation variable will cite source work instead (total of 3, ML Spoken Words 1 and Trabina 2)
_CITATION = r"""
@inproceedings{mazumder2021multilingual,
title={Multilingual Spoken Words Corpus},
author={Mazumder, Mark and Chitlangia, Sharad and Banbury, Colby and Kang, Yiping and Ciro, Juan Manuel and Achorn, Keith and Galvez, Daniel and Sabini, Mark and Mattson, Peter and Kanter, David and others},
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
year={2021}
}
@inproceedings{wu-etal-2018-creating,
title = "Creating a Translation Matrix of the {B}ible{'}s Names Across 591 Languages",
author = "Wu, Winston and
Vyas, Nidhi and
Yarowsky, David",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Hasida, Koiti and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios and
Tokunaga, Takenobu",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1263",
}
@inproceedings{wu-yarowsky-2018-comparative,
title = "A Comparative Study of Extremely Low-Resource Transliteration of the World{'}s Languages",
author = "Wu, Winston and
Yarowsky, David",
editor = "Calzolari, Nicoletta and
Choukri, Khalid and
Cieri, Christopher and
Declerck, Thierry and
Goggi, Sara and
Hasida, Koiti and
Isahara, Hitoshi and
Maegaard, Bente and
Mariani, Joseph and
Mazo, H{\'e}l{\`e}ne and
Moreno, Asuncion and
Odijk, Jan and
Piperidis, Stelios and
Tokunaga, Takenobu",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1150",
}
"""
logger = datasets.logging.get_logger(__name__)
_LOCAL = False
_LANGUAGES = ["ind"]
_DATASETNAME = "audio_keyword_spotting"
_DESCRIPTION = r"This dataset is a ASR for short text & voices, focusing in identifying common words (or keywords) with entities of Person name and Place Name found in Bible, as found in trabina (https://github.com/wswu/trabina)."
_HOMEPAGE = "https://huggingface.co/datasets/sil-ai/audio-keyword-spotting"
_LICENSE = Licenses.CC_BY_4_0.value
_URL = "https://huggingface.co/datasets/sil-ai/audio-keyword-spotting"
_HF_REMOTE_REF = "/".join(_URL.split("/")[-2:])
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SOURCE_VERSION = "0.0.1"
_SEACROWD_VERSION = "2024.06.20"
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
def construct_configs() -> List[SEACrowdConfig]:
"""
The function `construct_configs` constructs a list of SEACrowdConfig objects and returns the config list.
input:
None
output:
a list of `SEACrowdConfig` objects based on instantiated init variables
"""
# set output var
config_list = []
# construct zipped arg for config instantiation
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK))
# implement source schema
version, config_name_prefix = _SOURCE_VERSION, "source"
config_list += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{config_name_prefix}",
version=datasets.Version(version),
description=f"{_DATASETNAME} {config_name_prefix} schema",
schema=f"{config_name_prefix}",
subset_id=config_name_prefix,
)
]
# implement SEACrowd schema
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd"
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS:
config_list += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{config_name_prefix}_{config_name_suffix}",
version=datasets.Version(version),
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name}",
schema=f"{config_name_prefix}_{config_name_suffix}",
subset_id=config_name_prefix,
)
]
return config_list
class AudioKeywordSpottingDataset(datasets.GeneratorBasedBuilder):
"""AudioKeywordSpotting dataset, subsetted from https://huggingface.co/datasets/sil-ai/audio-keyword-spotting"""
# get all schema w/o lang arg + get all schema w/ lang arg
BUILDER_CONFIGS = construct_configs()
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
_config_schema_name = self.config.schema
logger.info(f"Received schema name: {self.config.schema}")
# source schema
if _config_schema_name == "source":
_GENDERS = ["MALE", "FEMALE", "OTHER", "NAN"]
features = datasets.Features(
{
"file": datasets.Value("string"),
"is_valid": datasets.Value("bool"),
"language": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"gender": datasets.ClassLabel(names=_GENDERS),
"keyword": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
# speech-text schema
elif _config_schema_name == "seacrowd_sptext":
features = schemas.speech_text_features
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
hf_dset_dict = datasets.load_dataset(_HF_REMOTE_REF, "ind")
return [datasets.SplitGenerator(name=datasets.Split(dset_key), gen_kwargs={"hf_dset": dset}) for dset_key, dset in hf_dset_dict.items() if dset.num_rows > 0]
def _generate_examples(self, hf_dset) -> Tuple[int, Dict]:
_config_schema_name = self.config.schema
_idx = 0
for datapoints in hf_dset:
# since no _idx is available to be used, we're creating it manually for both schema
if _config_schema_name == "source":
yield _idx, {colname: datapoints[colname] for colname in self.info.features}
elif _config_schema_name == "seacrowd_sptext":
yield _idx, {"id": _idx, "path": datapoints["file"], "audio": datapoints["audio"], "text": datapoints["keyword"], "speaker_id": datapoints["speaker_id"], "metadata": {"speaker_age": None, "speaker_gender": datapoints["gender"]}}
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
_idx += 1