|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@misc{singh2024aya, |
|
title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning}, |
|
author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and |
|
Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas |
|
Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph |
|
Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh |
|
Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and |
|
Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A. |
|
Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer |
|
and Ahmet Üstün and Marzieh Fadaee and Sara Hooker}, |
|
year={2024}, |
|
eprint={2402.06619}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "aya_collection_templated" |
|
|
|
_DESCRIPTION = """ |
|
The Aya Collection is a massive multilingual collection consisting of 513 million instances of prompts and |
|
completions covering a wide range of tasks. This dataset covers the templated prompts of the Aya Collection. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/CohereForAI/aya_collection" |
|
|
|
_LANGUAGES = ["ind", "jav", "sun", "ace", "ban", "bbc", "bjn", "min", "nij", "tha", "vie"] |
|
|
|
_LICENSE = Licenses.APACHE_2_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"ind": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_indo_stories/train-00000-of-00001.parquet", |
|
"jav": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_indo_stories/train-00000-of-00001.parquet", |
|
"sun": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_indo_stories/train-00000-of-00001.parquet", |
|
"ace": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet", |
|
"ban": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet", |
|
"bbc": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet", |
|
"bjn": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet", |
|
"min": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet", |
|
"nij": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_nusax_senti/train-00000-of-00001.parquet", |
|
"tha": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_thai_wikitionary/train-00000-of-00001.parquet", |
|
"vie": "https://huggingface.co/datasets/CohereForAI/aya_collection/resolve/main/templated_xcsqa/validation-00000-of-00001.parquet", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class AyaCollectionTemplatedDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
The Aya Collection is a massive multilingual collection consisting of 513 million instances of prompts and |
|
completions covering a wide range of tasks. This dataset covers the templated prompts of the Aya Collection. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{LANG}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} {LANG} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}_{LANG}", |
|
) |
|
for LANG in _LANGUAGES |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_{LANG}_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} {LANG} SEACrowd schema", |
|
schema="seacrowd_t2t", |
|
subset_id=f"{_DATASETNAME}_{LANG}", |
|
) |
|
for LANG in _LANGUAGES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_ind_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"inputs": datasets.Value("string"), |
|
"targets": datasets.Value("string"), |
|
"dataset_name": datasets.Value("string"), |
|
"sub_dataset_name": datasets.Value("string"), |
|
"task_type": datasets.Value("string"), |
|
"template_id": datasets.Value("int64"), |
|
"language": datasets.Value("string"), |
|
"split": datasets.Value("string"), |
|
"script": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
language = self.config.name.split("_")[3] |
|
|
|
if language in _LANGUAGES: |
|
data_path = Path(dl_manager.download_and_extract(_URLS[language])) |
|
else: |
|
data_path = [Path(dl_manager.download_and_extract(_URLS[language])) for language in _LANGUAGES] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_path, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
language = self.config.name.split("_")[3] |
|
|
|
df = pd.read_parquet(filepath) |
|
df = df[df["language"] == language] |
|
|
|
for index, row in df.iterrows(): |
|
|
|
if self.config.schema == "source": |
|
example = row.to_dict() |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
example = { |
|
"id": str(index), |
|
"text_1": row["inputs"], |
|
"text_2": row["targets"], |
|
"text_1_name": "inputs", |
|
"text_2_name": "targets", |
|
} |
|
|
|
yield index, example |
|
|