|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{bunagtransformer, |
|
author={Bunag, Kenrick Lance T and Esquivel, Rosanna A} |
|
title={Transformer-Based Conditional Language Models to Generate Filipino News Articles}, |
|
year = {2023}, |
|
publisher = {IEOM Society International}, |
|
url = {https://ieomsociety.org/proceedings/2023manila/595.pdf}, |
|
booktitle = {Proceedings of the International Conference on Industrial Engineering and Operations Management}, |
|
pages = {2231–2237}, |
|
numpages = {7}, |
|
location = {Manila, Philippines}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "balita_nlp" |
|
|
|
_DESCRIPTION = """\ |
|
BalitaNLP is a dataset for image-conditional language generation and text-conditional image generation. It consists of 300k Filipino news |
|
articles and images gathered from Filipino news outlets. News articles are categorized into five possible classes: News, Sports, Entertainment, |
|
Crime, and Other. Some articles were removed from the SEACrowd `imtext` schema, as their corresponding image files do not exist: |
|
- `train` split (262480 total articles): from the original 281403 articles, 18923 (~6.72%) had missing images |
|
- `test` split (32821 total articles): from the original 35177 articles, 2356 (~6.70%) had missing images |
|
- `validation` split (32806 total articles): from the original 35175 articles, 2369 (~6.73%) had missing images |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/KenrickLance/BalitaNLP-Dataset" |
|
|
|
_LANGUAGES = ["fil"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
"text": "https://storage.googleapis.com/public-kenricklancebunag/BalitaNLP/2022/BalitaNLP-Dataset.zip", |
|
"images": { |
|
"part1": "https://storage.googleapis.com/public-kenricklancebunag/BalitaNLP/2022/BalitaNLP-images_1.zip", |
|
"part2": "https://storage.googleapis.com/public-kenricklancebunag/BalitaNLP/2022/BalitaNLP-images_2.zip", |
|
"part3": "https://storage.googleapis.com/public-kenricklancebunag/BalitaNLP/2022/BalitaNLP-images_3.zip", |
|
"part4": "https://storage.googleapis.com/public-kenricklancebunag/BalitaNLP/2022/BalitaNLP-images_4.zip", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class BalitaNLPDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
BalitaNLP is an image-text dataset from https://github.com/KenrickLance/BalitaNLP-Dataset. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_imtext", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_imtext", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"body": datasets.Sequence(datasets.Value("string")), |
|
"title": datasets.Value("string"), |
|
"website": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"author": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"img_url": datasets.Value("string"), |
|
"img_path": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_imtext": |
|
features = schemas.image_text_features() |
|
features["metadata"] = { |
|
"context": datasets.Value("string"), |
|
"author": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"img_url": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"website": datasets.Value("string"), |
|
} |
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
""" |
|
Returns SplitGenerators. |
|
""" |
|
|
|
text_path = dl_manager.download_and_extract(_URLS["text"]) |
|
img_paths = dl_manager.download_and_extract([v for k, v in _URLS["images"].items()]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"text_path": os.path.join(text_path, "train.json"), |
|
"img_paths": img_paths, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"text_path": os.path.join(text_path, "test.json"), |
|
"img_paths": img_paths, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"text_path": os.path.join(text_path, "validation.json"), |
|
"img_paths": img_paths, |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, text_path: Path, img_paths: Path, split: str) -> Tuple[int, Dict]: |
|
""" |
|
Yields examples as (key, example) tuples. |
|
""" |
|
text_data = pd.read_json(text_path) |
|
data = text_data.to_records() |
|
|
|
for idx, row in enumerate(data): |
|
|
|
|
|
img_path = "" |
|
for idx_subpath, img_subpath in enumerate(img_paths): |
|
candidate_filepath = os.path.join(img_subpath, "part" + str(idx_subpath + 1), row["img_path"]) |
|
if os.path.isfile(candidate_filepath): |
|
img_path = candidate_filepath |
|
|
|
if self.config.schema == "source": |
|
x = { |
|
"body": row["body"], |
|
"title": row["title"], |
|
"website": row["website"], |
|
"category": row["category"], |
|
"date": row["date"], |
|
"author": row["author"], |
|
"url": row["url"], |
|
"img_url": row["img_url"], |
|
"img_path": img_path, |
|
} |
|
yield idx, x |
|
|
|
elif self.config.schema == "seacrowd_imtext": |
|
|
|
|
|
if img_path == "": |
|
continue |
|
|
|
x = { |
|
"id": idx, |
|
"image_paths": [img_path], |
|
"texts": row["title"], |
|
"metadata": { |
|
"context": row["body"], |
|
"author": row["author"], |
|
"category": row["category"], |
|
"date": row["date"], |
|
"img_url": row["img_url"], |
|
"url": row["url"], |
|
"website": row["website"], |
|
}, |
|
} |
|
yield idx, x |
|
|
|
else: |
|
raise ValueError(f"Invalid schema: '{self.config.schema}'") |
|
|