Last commit not found
import os | |
from typing import Dict, List, Tuple | |
import datasets | |
import jsonlines as jl | |
import pandas as pd | |
from seacrowd.utils import schemas | |
from seacrowd.utils.configs import SEACrowdConfig | |
from seacrowd.utils.constants import Licenses, Tasks | |
_CITATION = """\ | |
@inproceedings{thapliyal-etal-2022-crossmodal, | |
title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset", | |
author = "Thapliyal, Ashish V. and | |
Pont Tuset, Jordi and | |
Chen, Xi and | |
Soricut, Radu", | |
editor = "Goldberg, Yoav and | |
Kozareva, Zornitsa and | |
Zhang, Yue", | |
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", | |
month = dec, | |
year = "2022", | |
address = "Abu Dhabi, United Arab Emirates", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2022.emnlp-main.45", | |
doi = "10.18653/v1/2022.emnlp-main.45", | |
pages = "715--729", | |
} | |
""" | |
_DATASETNAME = "cc3m_35l" | |
_DESCRIPTION = """\ | |
CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018), | |
originally in English, to the other 34 languages using Google's machine translation API. | |
""" | |
_HOMEPAGE = "https://google.github.io/crossmodal-3600/" | |
_LICENSE = Licenses.CC_BY_4_0.value | |
# the image URLs are contained in tsv file together with the original captions which can be downloaded locally using google account. | |
# those tsv file originally can be found and downloaded from this page https://ai.google.com/research/ConceptualCaptions/download | |
# there are no direct image folder ready, so it needs to be downloaded one by one | |
# some warnings may occur when downloading due to reasons such as security certificate and others | |
_URLS = { | |
"trans_train": "https://storage.googleapis.com/crossmodal-3600/cc3m_mt_train.jsonl.gz", | |
"trans_dev": "https://storage.googleapis.com/crossmodal-3600/cc3m_mt_dev.jsonl.gz", | |
} | |
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] | |
_SOURCE_VERSION = "1.0.0" | |
_SEACROWD_VERSION = "2024.06.20" | |
_LANGUAGES = ["fil", "ind", "tha", "vie"] | |
_LOCAL = True | |
class CC3M35L(datasets.GeneratorBasedBuilder): | |
""" | |
CC3M-35L is created by translating Conceptual Captions 3M (Sharma et al., 2018), | |
originally in English, to the other 34 languages using Google's machine translation API. | |
""" | |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | |
BUILDER_CONFIGS = [SEACrowdConfig(name=f"cc3m_35l_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"cc3m_35l_{lang} source schema", schema="source", subset_id=f"cc3m_35l_{lang}",) for lang in _LANGUAGES] + [ | |
SEACrowdConfig( | |
name=f"{_DATASETNAME}_{lang}_seacrowd_imtext", | |
version=datasets.Version(_SEACROWD_VERSION), | |
description=f"{_DATASETNAME}_{lang} SEACrowd schema", | |
schema="seacrowd_imtext", | |
subset_id=f"{_DATASETNAME}_{lang}", | |
) | |
for lang in _LANGUAGES | |
] | |
DEFAULT_CONFIG_NAME = "cc3m_35l_id_source" | |
def _info(self) -> datasets.DatasetInfo: | |
if self.config.schema == "source": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"image_paths": datasets.Value("string"), | |
"src_lang": datasets.Value("string"), | |
"caption_tokenized": datasets.Value("string"), | |
"trg_lang": datasets.Value("string"), | |
"translation_tokenized": datasets.Value("string"), | |
"backtranslation_tokenized": datasets.Value("string"), | |
} | |
) | |
elif self.config.schema == "seacrowd_imtext": | |
features = schemas.image_text_features() | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def fill_img_path(self, df: pd.DataFrame, line: dict): | |
exceptions = [] | |
selected_row = df.query('caption==@line["caption_tokenized"]') | |
# it may return several rows, skip of empty | |
if not selected_row.empty: | |
# for each row, download the image, use its path and put the translation | |
for idx, row in selected_row.iterrows(): | |
row["trans_caption"] = line["translation_tokenized"] | |
row["backtrans_caption"] = line["backtranslation_tokenized"] | |
# if the image cannot be downloaded for some reason, skip it | |
# may cause difference in the total data each run | |
try: | |
row["img_path"] = datasets.DownloadManager().download(row["img_url"]) | |
except: | |
exceptions.append(idx) | |
return selected_row, exceptions | |
def is_target(self, line: dict, trg_lang: str): | |
if line["trg_lang"] == trg_lang: | |
return line | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
"""Returns SplitGenerators.""" | |
dev_path = dl_manager.download_and_extract(_URLS["trans_dev"]) | |
train_path = dl_manager.download_and_extract(_URLS["trans_train"]) | |
if self.config.data_dir is None: | |
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") | |
else: | |
data_dir = self.config.data_dir | |
# read tsv from local train and validation files | |
gcc_val = os.path.join(data_dir, "Validation_GCC-1.1.0-Validation.tsv") | |
gcc_train = os.path.join(data_dir, "Train_GCC-training.tsv") | |
# make it into pandas dataframe | |
colnames = ["caption", "img_url"] | |
gcc_val_df = pd.read_csv(gcc_val, sep="\t", header=None, names=colnames) | |
gcc_train_df = pd.read_csv(gcc_train, sep="\t", header=None, names=colnames) | |
# add new column to keep the downloaded image path | |
gcc_val_df["img_path"] = None | |
gcc_train_df["img_path"] = None | |
# add new column to keep the translated caption | |
gcc_val_df["trans_caption"] = None | |
gcc_train_df["trans_caption"] = None | |
gcc_val_df["backtrans_caption"] = None | |
gcc_train_df["backtrans_caption"] = None | |
# match the original captions in the translated set to the dataframe caption | |
# download the images from the URL and use it as the filepath | |
train_exceptions = [] | |
val_exceptions = [] | |
current_lang = self.config.subset_id.split("_")[2] | |
val_caption_targets = [] | |
train_caption_targets = [] | |
# filter validation data | |
with jl.open(os.path.join(dev_path), mode="r") as j: | |
val_caption_targets = [line for line in j if line["trg_lang"] == current_lang] | |
#for line in val_caption_targets[:100]: # this was for debugging only | |
for line in val_caption_targets: | |
res = self.fill_img_path(gcc_train_df, line) | |
val_exceptions.extend(res[1]) | |
gcc_val_df.update(res[0]) | |
# clean the memory | |
val_caption_targets = [] | |
# filter train data | |
with jl.open(os.path.join(train_path), mode="r") as j: | |
train_caption_targets = [line for line in j if line["trg_lang"] == current_lang] | |
#for line in train_caption_targets[:100]: # this was for debugging only | |
for line in train_caption_targets: | |
res = self.fill_img_path(gcc_val_df, line) | |
train_exceptions.extend(res[1]) | |
gcc_train_df.update(res[0]) | |
# clean the memory | |
train_caption_targets = [] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": gcc_train_df, | |
"exceptions": train_exceptions, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": gcc_val_df, | |
"exceptions": val_exceptions, | |
}, | |
), | |
] | |
def _generate_examples(self, filepath: dict, exceptions: list) -> Tuple[int, Dict]: | |
"""Yields examples as (key, example) tuples.""" | |
for idx, row in filepath.iterrows(): | |
if idx not in exceptions: | |
if self.config.schema == "source": | |
yield idx, { | |
"id": str(idx), | |
"image_paths": row["img_path"], | |
"src_lang": "en", | |
"caption_tokenized": row["caption"], | |
"trg_lang": self.config.subset_id.split("_")[2], | |
"translation_tokenized": row["trans_caption"], | |
"backtranslation_tokenized": row["backtrans_caption"], | |
} | |
elif self.config.schema == "seacrowd_imtext": | |
yield idx, { | |
"id": str(idx), | |
"image_paths": [row["img_path"]], | |
"texts": row["trans_caption"], | |
"metadata": { | |
"context": None, | |
"labels": None, | |
}, | |
} | |
else: | |
raise ValueError(f"Invalid config: {self.config.name}") | |