Upload cc_aligned_sent.py with huggingface_hub
Browse files- cc_aligned_sent.py +167 -0
cc_aligned_sent.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from datasets.download.download_manager import DownloadManager
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = r"""
|
12 |
+
@inproceedings{chaudhary-etal-2019-low,
|
13 |
+
title = "Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings",
|
14 |
+
author = "Chaudhary, Vishrav and
|
15 |
+
Tang, Yuqing and
|
16 |
+
Guzm{\'a}n, Francisco and
|
17 |
+
Schwenk, Holger and
|
18 |
+
Koehn, Philipp",
|
19 |
+
editor = "Bojar, Ond{\v{r}}ej and
|
20 |
+
Chatterjee, Rajen and
|
21 |
+
Federmann, Christian and
|
22 |
+
Fishel, Mark and
|
23 |
+
Graham, Yvette and
|
24 |
+
Haddow, Barry and
|
25 |
+
Huck, Matthias and
|
26 |
+
Yepes, Antonio Jimeno and
|
27 |
+
Koehn, Philipp and
|
28 |
+
Martins, Andr{\'e} and
|
29 |
+
Monz, Christof and
|
30 |
+
Negri, Matteo and
|
31 |
+
N{\'e}v{\'e}ol, Aur{\'e}lie and
|
32 |
+
Neves, Mariana and
|
33 |
+
Post, Matt and
|
34 |
+
Turchi, Marco and
|
35 |
+
Verspoor, Karin",
|
36 |
+
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)",
|
37 |
+
month = aug,
|
38 |
+
year = "2019",
|
39 |
+
address = "Florence, Italy",
|
40 |
+
publisher = "Association for Computational Linguistics",
|
41 |
+
url = "https://aclanthology.org/W19-5435",
|
42 |
+
doi = "10.18653/v1/W19-5435",
|
43 |
+
pages = "261--266",
|
44 |
+
}
|
45 |
+
"""
|
46 |
+
|
47 |
+
_LOCAL = False
|
48 |
+
_LANGUAGES = ["ind", "jav", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb"]
|
49 |
+
_DATASETNAME = "cc_aligned_sent"
|
50 |
+
_DESCRIPTION = """\
|
51 |
+
This dataset contains the sentence pairs extracted from CC-Aligned document
|
52 |
+
pairs using similarity scores of LASER embeddings (minimum similarity 1.04,
|
53 |
+
sorted based on decreasing similarity score). It misses some languages not
|
54 |
+
covered by LASER.
|
55 |
+
"""
|
56 |
+
|
57 |
+
_HOMEPAGE = "https://www2.statmt.org/cc-aligned/"
|
58 |
+
_LICENSE = Licenses.UNKNOWN.value
|
59 |
+
_URL = "https://data.statmt.org/cc-aligned/sentence-aligned/"
|
60 |
+
|
61 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
62 |
+
_SOURCE_VERSION = "1.0.0"
|
63 |
+
_SEACROWD_VERSION = "2024.06.20"
|
64 |
+
|
65 |
+
_SUBSETS = ["id_ID", "jv_ID", "su_ID", "th_TH", "vi_VN", "ms_MY", "lo_LA", "km_KH", "my_MM", "cx_PH"]
|
66 |
+
|
67 |
+
|
68 |
+
class CCAlignedSentencesDataset(datasets.GeneratorBasedBuilder):
|
69 |
+
"""CC Aligned Sentences dataset by Chaudhary et al., (2019)"""
|
70 |
+
|
71 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
72 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
73 |
+
|
74 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
75 |
+
|
76 |
+
# Add configurations for loading a dataset per language.
|
77 |
+
dataset_names = sorted([f"{_DATASETNAME}_{subset}" for subset in _SUBSETS])
|
78 |
+
BUILDER_CONFIGS = []
|
79 |
+
for name in dataset_names:
|
80 |
+
source_config = SEACrowdConfig(
|
81 |
+
name=f"{name}_source",
|
82 |
+
version=SOURCE_VERSION,
|
83 |
+
description=f"{_DATASETNAME} source schema",
|
84 |
+
schema="source",
|
85 |
+
subset_id=name,
|
86 |
+
)
|
87 |
+
BUILDER_CONFIGS.append(source_config)
|
88 |
+
seacrowd_config = SEACrowdConfig(
|
89 |
+
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
90 |
+
version=SEACROWD_VERSION,
|
91 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
92 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
93 |
+
subset_id=name,
|
94 |
+
)
|
95 |
+
BUILDER_CONFIGS.append(seacrowd_config)
|
96 |
+
|
97 |
+
# Choose first language as default
|
98 |
+
first_subset = sorted(_SUBSETS)[0]
|
99 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{first_subset}_source"
|
100 |
+
|
101 |
+
def _info(self) -> datasets.DatasetInfo:
|
102 |
+
if self.config.schema == "source":
|
103 |
+
features = datasets.Features(
|
104 |
+
{
|
105 |
+
"id": datasets.Value("string"),
|
106 |
+
"Source_Sentence": datasets.Value("string"),
|
107 |
+
"Target_Sentence": datasets.Value("string"),
|
108 |
+
"LASER_similarity": datasets.Value("float64"),
|
109 |
+
}
|
110 |
+
)
|
111 |
+
|
112 |
+
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
113 |
+
features = schemas.text_to_text.features
|
114 |
+
|
115 |
+
return datasets.DatasetInfo(
|
116 |
+
description=_DESCRIPTION,
|
117 |
+
features=features,
|
118 |
+
homepage=_HOMEPAGE,
|
119 |
+
license=_LICENSE,
|
120 |
+
citation=_CITATION,
|
121 |
+
)
|
122 |
+
|
123 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
124 |
+
"""Return SplitGenerators."""
|
125 |
+
# Define some functions for parsing config and URL names
|
126 |
+
def _split_at_n(text: str, n: int) -> Tuple[str, str]:
|
127 |
+
"""Split text on the n-th instance"""
|
128 |
+
return ("_".join(text.split("_")[:n]), "_".join(text.split("_")[n:]))
|
129 |
+
|
130 |
+
# Get URL. For cx_PH, the source and target languages are reversed
|
131 |
+
_, subset = _split_at_n(_split_at_n(self.config.name, 5)[0], 3)
|
132 |
+
(source_lang, target_lang) = (subset, "en_XX") if subset == "cx_PH" else ("en_XX", subset)
|
133 |
+
url = _URL + f"{source_lang}-{target_lang}.tsv.xz"
|
134 |
+
filepath = dl_manager.download_and_extract(url)
|
135 |
+
|
136 |
+
return [
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.TRAIN,
|
139 |
+
gen_kwargs={
|
140 |
+
"filepath": filepath,
|
141 |
+
"source_lang": source_lang,
|
142 |
+
"target_lang": target_lang,
|
143 |
+
},
|
144 |
+
)
|
145 |
+
]
|
146 |
+
|
147 |
+
def _generate_examples(self, filepath: Path, source_lang: str, target_lang: str) -> Tuple[int, Dict]:
|
148 |
+
"""Yield examples as (key, example) tuples"""
|
149 |
+
with open(filepath, encoding="utf-8") as file:
|
150 |
+
for idx, row in enumerate(file):
|
151 |
+
text_1, text_2, score = row.strip().split("\t")
|
152 |
+
if self.config.schema == "source":
|
153 |
+
example = {
|
154 |
+
"id": idx,
|
155 |
+
"Source_Sentence": text_1,
|
156 |
+
"Target_Sentence": text_2,
|
157 |
+
"LASER_similarity": float(score),
|
158 |
+
}
|
159 |
+
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
160 |
+
example = {
|
161 |
+
"id": idx,
|
162 |
+
"text_1": text_1,
|
163 |
+
"text_2": text_2,
|
164 |
+
"text_1_name": source_lang,
|
165 |
+
"text_2_name": target_lang,
|
166 |
+
}
|
167 |
+
yield idx, example
|