Datasets:
File size: 9,443 Bytes
cf15793 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# coding=utf-8
import csv
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{commonvoice:2020,
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
title = {Common Voice: A Massively-Multilingual Speech Corpus},
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
pages = {4211--4215},
year = 2020
}
"""
_DATASETNAME = "commonvoice_120"
_DESCRIPTION = """\
The Common Mozilla Voice dataset consists of a unique MP3 and corresponding text file.
Many of the 26119 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help improve the accuracy of speech recognition engines.
The dataset currently consists of 17127 validated hours in 104 languages, but more voices and languages are always added.
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0 and use huggingface-cli login for authentication
"""
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
_LANGUAGES = ["cnh", "ind", "tha", "vie"]
_LANG_TO_CVLANG = {"cnh": "cnh", "ind": "id", "tha": "th", "vie": "vi"}
_AGE_TO_INT = {"": None, "teens": 10, "twenties": 20, "thirties": 30, "fourties": 40, "fifties": 50, "sixties": 60, "seventies": 70, "eighties": 80}
_LICENSE = Licenses.CC0_1_0.value
# Note: the dataset is gated in HuggingFace. It's public after providing access token
_LOCAL = False
_COMMONVOICE_URL_TEMPLATE = "https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0/resolve/main/"
_URLS = {"audio": _COMMONVOICE_URL_TEMPLATE + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar", "transcript": _COMMONVOICE_URL_TEMPLATE + "transcript/{lang}/{split}.tsv", "n_shards": _COMMONVOICE_URL_TEMPLATE + "n_shards.json"}
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class Commonvoice120(datasets.GeneratorBasedBuilder):
"""This is the dataloader for CommonVoice 12.0 Mozilla"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = (
*[
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}{'_' if lang else ''}source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema for {lang}",
schema="source",
subset_id=f"{_DATASETNAME}{'_' if lang else ''}{lang}",
)
for lang in ["", *_LANGUAGES]
],
*[
SEACrowdConfig(
name=f"{_DATASETNAME}_{lang}{'_' if lang else ''}seacrowd_sptext",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema for {lang}",
schema="seacrowd_sptext",
subset_id=f"{_DATASETNAME}{'_' if lang else ''}{lang}",
)
for lang in ["", *_LANGUAGES]
],
)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"client_id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=48_000),
"sentence": datasets.Value("string"),
"up_votes": datasets.Value("int64"),
"down_votes": datasets.Value("int64"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accent": datasets.Value("string"),
"locale": datasets.Value("string"),
"segment": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
lang_code = self.config.subset_id.split("_")[-1]
languages = [_LANG_TO_CVLANG.get(lang, lang) for lang in (_LANGUAGES if lang_code == "120" else [lang_code])]
n_shards_path = dl_manager.download_and_extract(_URLS["n_shards"])
with open(n_shards_path, encoding="utf-8") as f:
n_shards = json.load(f)
audio_urls = {}
meta_urls = {}
splits = ("train", "dev", "test")
for split in splits:
audio_urls[split] = [_URLS["audio"].format(lang=lang, split=split, shard_idx=i) for lang in languages for i in range(n_shards[lang][split])]
meta_urls[split] = [_URLS["transcript"].format(lang=lang, split=split) for lang in languages]
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths)
meta_paths = dl_manager.download_and_extract(meta_urls)
split_names = {
"train": datasets.Split.TRAIN,
"dev": datasets.Split.VALIDATION,
"test": datasets.Split.TEST,
}
return [
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"audio_archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
"meta_paths": meta_paths[split],
"split": "train",
},
)
for split in splits
]
def _generate_examples(self, local_extracted_archive_paths: [Path], audio_archives: [Path], meta_paths: [Path], split: str) -> Tuple[int, Dict]:
data_fields = list(self._info().features.keys())
metadata = {}
for meta_path in meta_paths:
with open(meta_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in reader:
if not row["path"].endswith(".mp3"):
row["path"] += ".mp3"
if "accents" in row:
row["accent"] = row["accents"]
del row["accents"]
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
if self.config.schema == "source":
for i, audio_archive in enumerate(audio_archives):
for path, file in audio_archive:
_, filename = os.path.split(path)
if filename in metadata:
src_result = dict(metadata[filename])
path = os.path.join(local_extracted_archive_paths[i], path)
result = {
"client_id": src_result["client_id"],
"path": path,
"audio": {"path": path, "bytes": file.read()},
"sentence": src_result["sentence"],
"up_votes": src_result["up_votes"],
"down_votes": src_result["down_votes"],
"age": src_result["age"],
"gender": src_result["gender"],
"accent": src_result["accent"],
"locale": src_result["locale"],
"segment": src_result["segment"],
}
yield path, result
elif self.config.schema == "seacrowd_sptext":
for i, audio_archive in enumerate(audio_archives):
for path, file in audio_archive:
_, filename = os.path.split(path)
if filename in metadata:
src_result = dict(metadata[filename])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive_paths[i], path)
result = {
"id": src_result["path"].replace(".mp3", ""),
"path": path,
"audio": {"path": path, "bytes": file.read()},
"text": src_result["sentence"],
"speaker_id": src_result["client_id"],
"metadata": {
"speaker_age": _AGE_TO_INT[src_result["age"]],
"speaker_gender": src_result["gender"],
},
}
yield path, result
|