File size: 4,782 Bytes
64afe1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@INPROCEEDINGS{8459963,
      author={E. D. {Livelo} and C. {Cheng}},
      booktitle={2018 IEEE International Conference on Agents (ICA)},
      title={Intelligent Dengue Infoveillance Using Gated Recurrent Neural Learning and Cross-Label Frequencies},
      year={2018},
      volume={},
      number={},
      pages={2-7},
      doi={10.1109/AGENTS.2018.8459963}}
    }
"""

_LANGUAGES = ["fil"]

# copied from https://huggingface.co/datasets/dengue_filipino/blob/main/dengue_filipino.py
_URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/dengue/dengue_raw.zip"
_DATASETNAME = "dengue_filipino"

_DESCRIPTION = """\
Benchmark dataset for low-resource multi-label classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets.
"""

_HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks"

_LICENSE = Licenses.UNKNOWN.value

_SUPPORTED_TASKS = [Tasks.DOMAIN_KNOWLEDGE_MULTICLASSIFICATION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"

_LOCAL = False


class DengueFilipinoDataset(datasets.GeneratorBasedBuilder):
    """Dengue Dataset Low-Resource Multi-label Text Classification Dataset in Filipino"""

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_text_multi",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema text multi",
            schema="seacrowd_text_multi",
            subset_id=f"{_DATASETNAME}",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "absent": datasets.features.ClassLabel(names=["0", "1"]),
                    "dengue": datasets.features.ClassLabel(names=["0", "1"]),
                    "health": datasets.features.ClassLabel(names=["0", "1"]),
                    "mosquito": datasets.features.ClassLabel(names=["0", "1"]),
                    "sick": datasets.features.ClassLabel(names=["0", "1"]),
                }
            )
        elif self.config.schema == "seacrowd_text_multi":
            features = schemas.text_multi_features(["0", "1"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, split: str) -> Tuple[int, Dict]:
        dataset = datasets.load_dataset(_DATASETNAME, split=split)
        for id, data in enumerate(dataset):
            if self.config.schema == "source":
                yield id, {
                    "text": data["text"],
                    "absent": data["absent"],
                    "dengue": data["dengue"],
                    "health": data["health"],
                    "mosquito": data["mosquito"],
                    "sick": data["sick"],
                }

            elif self.config.schema == "seacrowd_text_multi":
                yield id, {
                    "id": id,
                    "text": data["text"],
                    "labels": [
                        data["absent"],
                        data["dengue"],
                        data["health"],
                        data["mosquito"],
                        data["sick"],
                    ],
                }