dengue_filipino / dengue_filipino.py
jcblaise's picture
Fixed URL pointer to the dataset
34d76b4 verified
raw
history blame
4.79 kB
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{8459963,
author={E. D. {Livelo} and C. {Cheng}},
booktitle={2018 IEEE International Conference on Agents (ICA)},
title={Intelligent Dengue Infoveillance Using Gated Recurrent Neural Learning and Cross-Label Frequencies},
year={2018},
volume={},
number={},
pages={2-7},
doi={10.1109/AGENTS.2018.8459963}}
}
"""
_LANGUAGES = ["fil"]
# copied from https://huggingface.co/datasets/dengue_filipino/blob/main/dengue_filipino.py
_URL = "https://huggingface.co/datasets/jcblaise/dengue_filipino/resolve/main/dengue_raw.zip"
_DATASETNAME = "dengue_filipino"
_DESCRIPTION = """\
Benchmark dataset for low-resource multi-label classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets.
"""
_HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks"
_LICENSE = Licenses.UNKNOWN.value
_SUPPORTED_TASKS = [Tasks.DOMAIN_KNOWLEDGE_MULTICLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LOCAL = False
class DengueFilipinoDataset(datasets.GeneratorBasedBuilder):
"""Dengue Dataset Low-Resource Multi-label Text Classification Dataset in Filipino"""
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_text_multi",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema text multi",
schema="seacrowd_text_multi",
subset_id=f"{_DATASETNAME}",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"absent": datasets.features.ClassLabel(names=["0", "1"]),
"dengue": datasets.features.ClassLabel(names=["0", "1"]),
"health": datasets.features.ClassLabel(names=["0", "1"]),
"mosquito": datasets.features.ClassLabel(names=["0", "1"]),
"sick": datasets.features.ClassLabel(names=["0", "1"]),
}
)
elif self.config.schema == "seacrowd_text_multi":
features = schemas.text_multi_features(["0", "1"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"split": "test",
},
),
]
def _generate_examples(self, split: str) -> Tuple[int, Dict]:
dataset = datasets.load_dataset(_DATASETNAME, split=split)
for id, data in enumerate(dataset):
if self.config.schema == "source":
yield id, {
"text": data["text"],
"absent": data["absent"],
"dengue": data["dengue"],
"health": data["health"],
"mosquito": data["mosquito"],
"sick": data["sick"],
}
elif self.config.schema == "seacrowd_text_multi":
yield id, {
"id": id,
"text": data["text"],
"labels": [
data["absent"],
data["dengue"],
data["health"],
data["mosquito"],
data["sick"],
],
}