|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{8459963, |
|
author={E. D. {Livelo} and C. {Cheng}}, |
|
booktitle={2018 IEEE International Conference on Agents (ICA)}, |
|
title={Intelligent Dengue Infoveillance Using Gated Recurrent Neural Learning and Cross-Label Frequencies}, |
|
year={2018}, |
|
volume={}, |
|
number={}, |
|
pages={2-7}, |
|
doi={10.1109/AGENTS.2018.8459963}} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["fil"] |
|
|
|
|
|
_URL = "https://huggingface.co/datasets/jcblaise/dengue_filipino/resolve/main/dengue_raw.zip" |
|
_DATASETNAME = "dengue_filipino" |
|
|
|
_DESCRIPTION = """\ |
|
Benchmark dataset for low-resource multi-label classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_SUPPORTED_TASKS = [Tasks.DOMAIN_KNOWLEDGE_MULTICLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_LOCAL = False |
|
|
|
|
|
class DengueFilipinoDataset(datasets.GeneratorBasedBuilder): |
|
"""Dengue Dataset Low-Resource Multi-label Text Classification Dataset in Filipino""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_text_multi", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} SEACrowd schema text multi", |
|
schema="seacrowd_text_multi", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"absent": datasets.features.ClassLabel(names=["0", "1"]), |
|
"dengue": datasets.features.ClassLabel(names=["0", "1"]), |
|
"health": datasets.features.ClassLabel(names=["0", "1"]), |
|
"mosquito": datasets.features.ClassLabel(names=["0", "1"]), |
|
"sick": datasets.features.ClassLabel(names=["0", "1"]), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text_multi": |
|
features = schemas.text_multi_features(["0", "1"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, split: str) -> Tuple[int, Dict]: |
|
dataset = datasets.load_dataset(_DATASETNAME, split=split) |
|
for id, data in enumerate(dataset): |
|
if self.config.schema == "source": |
|
yield id, { |
|
"text": data["text"], |
|
"absent": data["absent"], |
|
"dengue": data["dengue"], |
|
"health": data["health"], |
|
"mosquito": data["mosquito"], |
|
"sick": data["sick"], |
|
} |
|
|
|
elif self.config.schema == "seacrowd_text_multi": |
|
yield id, { |
|
"id": id, |
|
"text": data["text"], |
|
"labels": [ |
|
data["absent"], |
|
data["dengue"], |
|
data["health"], |
|
data["mosquito"], |
|
data["sick"], |
|
], |
|
} |
|
|