Datasets:

Languages:
Vietnamese
ArXiv:
License:
holylovenia commited on
Commit
3820cba
1 Parent(s): 0f84278

Upload duolingo_staple_2020.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. duolingo_staple_2020.py +240 -0
duolingo_staple_2020.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from pathlib import Path
17
+ from typing import Dict, List, Tuple
18
+
19
+ import datasets
20
+
21
+ from seacrowd.utils.configs import SEACrowdConfig
22
+ from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
23
+ Licenses, Tasks)
24
+
25
+ _CITATION = """\
26
+ @inproceedings{mayhew-etal-2020-simultaneous,
27
+ title = "Simultaneous Translation and Paraphrase for Language Education",
28
+ author = "Mayhew, Stephen and
29
+ Bicknell, Klinton and
30
+ Brust, Chris and
31
+ McDowell, Bill and
32
+ Monroe, Will and
33
+ Settles, Burr",
34
+ editor = "Birch, Alexandra and
35
+ Finch, Andrew and
36
+ Hayashi, Hiroaki and
37
+ Heafield, Kenneth and
38
+ Junczys-Dowmunt, Marcin and
39
+ Konstas, Ioannis and
40
+ Li, Xian and
41
+ Neubig, Graham and
42
+ Oda, Yusuke",
43
+ booktitle = "Proceedings of the Fourth Workshop on Neural Generation and Translation",
44
+ month = jul,
45
+ year = "2020",
46
+ address = "Online",
47
+ publisher = "Association for Computational Linguistics",
48
+ url = "https://aclanthology.org/2020.ngt-1.28",
49
+ doi = "10.18653/v1/2020.ngt-1.28",
50
+ pages = "232--243",
51
+ }
52
+ """
53
+
54
+ _DATASETNAME = "duolingo_staple_2020"
55
+
56
+ _DESCRIPTION = """\
57
+ This dataset is provided by Duolingo for their Simultaneous Translation and
58
+ Paraphrase for Language Education (STAPLE) shared task in 2020. It contains
59
+ English prompts and corresponding sets of plausible translations in five other
60
+ languages, including Vietnamese. Each prompt is provided with a baseline
61
+ automatic reference translation from Amazon, as well as some accepted
62
+ translations with corresponding user response rates used for task scoring.
63
+ """
64
+
65
+ _HOMEPAGE = "https://sharedtask.duolingo.com/#data"
66
+
67
+ _LANGUAGES = ["vie"]
68
+
69
+ _LICENSE = Licenses.CC_BY_NC_4_0.value
70
+
71
+ _LOCAL = True # needs to fill a form to download the dataset (dynamic link)
72
+
73
+ _URLS = "https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/38OJR6&version=6.0"
74
+
75
+ # `aws_baseline` refers to reference translations from Amazon Automated MT model,
76
+ # while `gold` refers to translations accepted by Duolingo learners
77
+ _SUBSETS = ["aws_baseline", "gold"]
78
+
79
+ _SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
80
+ _SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # t2t
81
+
82
+ _SOURCE_VERSION = "6.0.0"
83
+
84
+ _SEACROWD_VERSION = "2024.06.20"
85
+
86
+
87
+ class DuolingoStaple2020Dataset(datasets.GeneratorBasedBuilder):
88
+ """Dataset for the Duolingo STAPLE 2020 shared task."""
89
+
90
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
91
+ SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
92
+
93
+ BUILDER_CONFIGS = []
94
+ for subset in _SUBSETS:
95
+ BUILDER_CONFIGS += [
96
+ SEACrowdConfig(
97
+ name=f"{_DATASETNAME}_{subset}_source",
98
+ version=SOURCE_VERSION,
99
+ description=f"{_DATASETNAME} {subset} source schema",
100
+ schema="source",
101
+ subset_id=subset,
102
+ ),
103
+ SEACrowdConfig(
104
+ name=f"{_DATASETNAME}_{subset}_{_SEACROWD_SCHEMA}",
105
+ version=SEACROWD_VERSION,
106
+ description=f"{_DATASETNAME} {subset} SEACrowd schema",
107
+ schema=_SEACROWD_SCHEMA,
108
+ subset_id=subset,
109
+ ),
110
+ ]
111
+
112
+ DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_gold_source"
113
+
114
+ def _info(self) -> datasets.DatasetInfo:
115
+ if self.config.schema == "source":
116
+ if self.config.subset_id == "aws_baseline":
117
+ features = datasets.Features(
118
+ {
119
+ "prompt_id": datasets.Value("string"),
120
+ "source_text": datasets.Value("string"),
121
+ "translation": datasets.Value("string"),
122
+ }
123
+ )
124
+ elif self.config.subset_id == "gold":
125
+ features = datasets.Features(
126
+ {
127
+ "prompt_id": datasets.Value("string"),
128
+ "source_text": datasets.Value("string"),
129
+ "translations": [
130
+ {
131
+ "text": datasets.Value("string"),
132
+ "weight": datasets.Value("float64"),
133
+ }
134
+ ],
135
+ }
136
+ )
137
+ elif self.config.schema == _SEACROWD_SCHEMA:
138
+ features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # text2text_features
139
+
140
+ return datasets.DatasetInfo(
141
+ description=_DESCRIPTION,
142
+ features=features,
143
+ homepage=_HOMEPAGE,
144
+ license=_LICENSE,
145
+ citation=_CITATION,
146
+ )
147
+
148
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
149
+ """Returns SplitGenerators."""
150
+ if self.config.data_dir is None:
151
+ raise ValueError("This is a local dataset. Please pass the data_dir kwarg (staple-2020 dir) to load_dataset.")
152
+ else:
153
+ data_dir = Path(self.config.data_dir) / "en_vi"
154
+
155
+ if self.config.subset_id == "aws_baseline":
156
+ filename = "aws_baseline.pred"
157
+ elif self.config.subset_id == "gold":
158
+ filename = "2020-02-20.gold"
159
+
160
+ return [
161
+ datasets.SplitGenerator(
162
+ name=datasets.Split.TRAIN,
163
+ gen_kwargs={
164
+ "filepath": data_dir / f"train.en_vi.{'2020-01-13.gold' if self.config.subset_id == 'gold' else filename}.txt",
165
+ },
166
+ ),
167
+ datasets.SplitGenerator(
168
+ name=datasets.Split.TEST,
169
+ gen_kwargs={
170
+ "filepath": data_dir / f"test.en_vi.{filename}.txt",
171
+ },
172
+ ),
173
+ datasets.SplitGenerator(
174
+ name=datasets.Split.VALIDATION,
175
+ gen_kwargs={
176
+ "filepath": data_dir / f"dev.en_vi.{filename}.txt",
177
+ },
178
+ ),
179
+ ]
180
+
181
+ def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
182
+ """Yields examples as (key, example) tuples."""
183
+ # aws_baseline subset
184
+ if self.config.subset_id == "aws_baseline":
185
+ with open(filepath, "r", encoding="utf-8") as f:
186
+ entries = f.read().strip().split("\n\n")
187
+
188
+ for key, entry in enumerate(entries):
189
+ parts = entry.split("|")
190
+ prompt_id = parts[0].strip()
191
+ source_text, translation = list(map(str.strip, parts[1].split("\n")))
192
+
193
+ if self.config.schema == "source":
194
+ yield key, {
195
+ "prompt_id": prompt_id,
196
+ "source_text": source_text,
197
+ "translation": translation,
198
+ }
199
+ elif self.config.schema == _SEACROWD_SCHEMA:
200
+ yield key, {
201
+ "id": str(key),
202
+ "text_1": source_text,
203
+ "text_2": translation,
204
+ "text_1_name": "english",
205
+ "text_2_name": "translation",
206
+ }
207
+
208
+ # gold subset
209
+ elif self.config.subset_id == "gold":
210
+ with open(filepath, "r", encoding="utf-8") as f:
211
+ entries = f.read().strip().split("\n\n")
212
+
213
+ key = 0
214
+ for entry in entries:
215
+ parts = entry.split("\n")
216
+ prompt_id, source_text = list(map(str.strip, parts[0].split("|")))
217
+
218
+ if self.config.schema == "source":
219
+ translations = []
220
+ for answer in parts[1:]:
221
+ translation, weight = list(map(str.strip, answer.split("|")))
222
+ translations.append({"text": translation, "weight": float(weight)})
223
+ yield key, {
224
+ "prompt_id": prompt_id,
225
+ "source_text": source_text,
226
+ "translations": translations,
227
+ }
228
+ key += 1
229
+
230
+ elif self.config.schema == _SEACROWD_SCHEMA:
231
+ for answer in parts[1:]:
232
+ translation, _ = list(map(str.strip, answer.split("|")))
233
+ yield key, {
234
+ "id": str(key),
235
+ "text_1": source_text,
236
+ "text_2": translation,
237
+ "text_1_name": "english",
238
+ "text_2_name": "translation",
239
+ }
240
+ key += 1