holylovenia
commited on
Commit
•
9501e26
1
Parent(s):
afdf9b8
Upload facqa.py with huggingface_hub
Browse files
facqa.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
from nusacrowd.nusa_datasets.facqa.utils.facqa_utils import (getAnswerString, listToString)
|
9 |
+
from nusacrowd.utils import schemas
|
10 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
11 |
+
from nusacrowd.utils.constants import Tasks
|
12 |
+
|
13 |
+
_CITATION = """
|
14 |
+
@inproceedings{purwarianti2007machine,
|
15 |
+
title={A Machine Learning Approach for Indonesian Question Answering System},
|
16 |
+
author={Ayu Purwarianti, Masatoshi Tsuchiya, and Seiichi Nakagawa},
|
17 |
+
booktitle={Proceedings of Artificial Intelligence and Applications },
|
18 |
+
pages={573--578},
|
19 |
+
year={2007}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
24 |
+
_LOCAL = False
|
25 |
+
|
26 |
+
_DATASETNAME = "facqa"
|
27 |
+
|
28 |
+
_DESCRIPTION = """
|
29 |
+
FacQA: The goal of the FacQA dataset is to find the answer to a question from a provided short passage from a news article.
|
30 |
+
Each row in the FacQA dataset consists of a question, a short passage, and a label phrase, which can be found inside the
|
31 |
+
corresponding short passage. There are six categories of questions: date, location, name,
|
32 |
+
organization, person, and quantitative.
|
33 |
+
"""
|
34 |
+
|
35 |
+
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
|
36 |
+
|
37 |
+
_LICENSE = "CC-BY-SA 4.0"
|
38 |
+
|
39 |
+
_URLS = {
|
40 |
+
_DATASETNAME: {
|
41 |
+
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/test_preprocess.csv",
|
42 |
+
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/train_preprocess.csv",
|
43 |
+
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/facqa_qa-factoid-itb/valid_preprocess.csv",
|
44 |
+
}
|
45 |
+
}
|
46 |
+
|
47 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
48 |
+
|
49 |
+
_SOURCE_VERSION = "1.0.0"
|
50 |
+
|
51 |
+
_NUSANTARA_VERSION = "1.0.0"
|
52 |
+
|
53 |
+
|
54 |
+
class FacqaDataset(datasets.GeneratorBasedBuilder):
|
55 |
+
"""FacQA dataset is a labeled dataset for indonesian question answering task"""
|
56 |
+
|
57 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
58 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
59 |
+
|
60 |
+
BUILDER_CONFIGS = [
|
61 |
+
NusantaraConfig(
|
62 |
+
name="facqa_source",
|
63 |
+
version=SOURCE_VERSION,
|
64 |
+
description="FacQA source schema",
|
65 |
+
schema="source",
|
66 |
+
subset_id="facqa",
|
67 |
+
),
|
68 |
+
NusantaraConfig(
|
69 |
+
name="facqa_nusantara_qa",
|
70 |
+
version=NUSANTARA_VERSION,
|
71 |
+
description="FacQA Nusantara schema",
|
72 |
+
schema="nusantara_qa",
|
73 |
+
subset_id="facqa",
|
74 |
+
),
|
75 |
+
]
|
76 |
+
|
77 |
+
DEFAULT_CONFIG_NAME = "facqa_source"
|
78 |
+
|
79 |
+
def _info(self) -> datasets.DatasetInfo:
|
80 |
+
if self.config.schema == "source":
|
81 |
+
features = datasets.Features(
|
82 |
+
{
|
83 |
+
"index": datasets.Value("int64"),
|
84 |
+
"question": [datasets.Value("string")],
|
85 |
+
"passage": [datasets.Value("string")],
|
86 |
+
"seq_label": [datasets.Value("string")],
|
87 |
+
}
|
88 |
+
)
|
89 |
+
elif self.config.schema == "nusantara_qa":
|
90 |
+
features = schemas.qa_features
|
91 |
+
|
92 |
+
return datasets.DatasetInfo(
|
93 |
+
description=_DESCRIPTION,
|
94 |
+
features=features,
|
95 |
+
homepage=_HOMEPAGE,
|
96 |
+
license=_LICENSE,
|
97 |
+
citation=_CITATION,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
101 |
+
"""Returns SplitGenerators."""
|
102 |
+
urls = _URLS[_DATASETNAME]
|
103 |
+
train_csv_path = Path(dl_manager.download_and_extract(urls["train"]))
|
104 |
+
validation_csv_path = Path(dl_manager.download_and_extract(urls["validation"]))
|
105 |
+
test_csv_path = Path(dl_manager.download_and_extract(urls["test"]))
|
106 |
+
data_files = {
|
107 |
+
"train": train_csv_path,
|
108 |
+
"validation": validation_csv_path,
|
109 |
+
"test": test_csv_path,
|
110 |
+
}
|
111 |
+
return [
|
112 |
+
datasets.SplitGenerator(
|
113 |
+
name=datasets.Split.TRAIN,
|
114 |
+
gen_kwargs={
|
115 |
+
"filepath": data_files["train"],
|
116 |
+
"split": "train",
|
117 |
+
},
|
118 |
+
),
|
119 |
+
datasets.SplitGenerator(
|
120 |
+
name=datasets.Split.TEST,
|
121 |
+
gen_kwargs={
|
122 |
+
"filepath": data_files["test"],
|
123 |
+
"split": "test",
|
124 |
+
},
|
125 |
+
),
|
126 |
+
datasets.SplitGenerator(
|
127 |
+
name=datasets.Split.VALIDATION,
|
128 |
+
gen_kwargs={
|
129 |
+
"filepath": data_files["validation"],
|
130 |
+
"split": "dev",
|
131 |
+
},
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
136 |
+
"""Yields examples as (key, example) tuples."""
|
137 |
+
df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
|
138 |
+
if self.config.schema == "source":
|
139 |
+
for row in df.itertuples():
|
140 |
+
entry = {"index": row.index, "question": ast.literal_eval(row.question), "passage": ast.literal_eval(row.passage), "seq_label": ast.literal_eval(row.seq_label)}
|
141 |
+
yield row.index, entry
|
142 |
+
|
143 |
+
elif self.config.schema == "nusantara_qa":
|
144 |
+
for row in df.itertuples():
|
145 |
+
entry = {
|
146 |
+
"id": str(row.index),
|
147 |
+
"question_id": str(row.index),
|
148 |
+
"document_id": str(row.index),
|
149 |
+
"question": listToString(ast.literal_eval(row.question)),
|
150 |
+
"type": "extractive",
|
151 |
+
"choices": [],
|
152 |
+
"context": listToString(ast.literal_eval(row.passage)),
|
153 |
+
"answer": [getAnswerString(ast.literal_eval(row.passage), ast.literal_eval(row.seq_label))],
|
154 |
+
}
|
155 |
+
yield row.index, entry
|