holylovenia
commited on
Commit
•
1703442
1
Parent(s):
59f3038
Upload filipino_slang_norm.py with huggingface_hub
Browse files- filipino_slang_norm.py +136 -0
filipino_slang_norm.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from datasets.download.download_manager import DownloadManager
|
6 |
+
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
@inproceedings{flores-radev-2022-look,
|
13 |
+
title = "Look Ma, Only 400 Samples! Revisiting the Effectiveness of Automatic N-Gram Rule Generation for Spelling Normalization in {F}ilipino",
|
14 |
+
author = "Flores, Lorenzo Jaime and
|
15 |
+
Radev, Dragomir",
|
16 |
+
booktitle = "Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)",
|
17 |
+
month = dec,
|
18 |
+
year = "2022",
|
19 |
+
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
|
20 |
+
publisher = "Association for Computational Linguistics",
|
21 |
+
url = "https://aclanthology.org/2022.sustainlp-1.5",
|
22 |
+
pages = "29--35",
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
_LOCAL = False
|
27 |
+
_LANGUAGES = ["fil"]
|
28 |
+
_DATASETNAME = "filipino_slang_norm"
|
29 |
+
_DESCRIPTION = """\
|
30 |
+
This dataset contains 398 abbreviated and/or contracted Filipino words used in
|
31 |
+
Facebook comments made on weather advisories from a Philippine weather bureau.
|
32 |
+
volunteers.
|
33 |
+
"""
|
34 |
+
|
35 |
+
_HOMEPAGE = "https://github.com/ljyflores/efficient-spelling-normalization-filipino"
|
36 |
+
_LICENSE = Licenses.UNKNOWN.value
|
37 |
+
_URLS = {
|
38 |
+
"train": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/train_words.csv",
|
39 |
+
"test": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/test_words.csv",
|
40 |
+
}
|
41 |
+
|
42 |
+
_SUPPORTED_TASKS = [Tasks.MULTILEXNORM]
|
43 |
+
_SOURCE_VERSION = "1.0.0"
|
44 |
+
_SEACROWD_VERSION = "2024.06.20"
|
45 |
+
|
46 |
+
|
47 |
+
class FilipinoSlangNormDataset(datasets.GeneratorBasedBuilder):
|
48 |
+
"""Filipino Slang Norm dataset by Flores and Radev (2022)"""
|
49 |
+
|
50 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
51 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
52 |
+
|
53 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
SEACrowdConfig(
|
57 |
+
name=f"{_DATASETNAME}_source",
|
58 |
+
version=SOURCE_VERSION,
|
59 |
+
description=f"{_DATASETNAME} source schema",
|
60 |
+
schema="source",
|
61 |
+
subset_id=_DATASETNAME,
|
62 |
+
),
|
63 |
+
SEACrowdConfig(
|
64 |
+
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
65 |
+
version=SEACROWD_VERSION,
|
66 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
67 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
68 |
+
subset_id=_DATASETNAME,
|
69 |
+
),
|
70 |
+
]
|
71 |
+
|
72 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
73 |
+
|
74 |
+
def _info(self) -> datasets.DatasetInfo:
|
75 |
+
if self.config.schema == "source":
|
76 |
+
features = datasets.Features(
|
77 |
+
{
|
78 |
+
"id": datasets.Value("string"),
|
79 |
+
"src_sent": datasets.Value("string"),
|
80 |
+
"norm_sent": datasets.Value("string"),
|
81 |
+
}
|
82 |
+
)
|
83 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
84 |
+
features = schemas.text2text_features
|
85 |
+
return datasets.DatasetInfo(
|
86 |
+
description=_DESCRIPTION,
|
87 |
+
features=features,
|
88 |
+
homepage=_HOMEPAGE,
|
89 |
+
license=_LICENSE,
|
90 |
+
citation=_CITATION,
|
91 |
+
)
|
92 |
+
|
93 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
94 |
+
"""Returns SplitGenerators."""
|
95 |
+
data_files = {
|
96 |
+
"train": Path(dl_manager.download_and_extract(_URLS["train"])),
|
97 |
+
"test": Path(dl_manager.download_and_extract(_URLS["test"])),
|
98 |
+
}
|
99 |
+
|
100 |
+
return [
|
101 |
+
datasets.SplitGenerator(
|
102 |
+
name=datasets.Split.TRAIN,
|
103 |
+
gen_kwargs={
|
104 |
+
"filepath": data_files["train"],
|
105 |
+
"split": "train",
|
106 |
+
},
|
107 |
+
),
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TEST,
|
110 |
+
gen_kwargs={
|
111 |
+
"filepath": data_files["test"],
|
112 |
+
"split": "test",
|
113 |
+
},
|
114 |
+
),
|
115 |
+
]
|
116 |
+
|
117 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
118 |
+
"""Yield examples as (key, example) tuples"""
|
119 |
+
with open(filepath, encoding="utf-8") as f:
|
120 |
+
for guid, line in enumerate(f):
|
121 |
+
src_sent, norm_sent = line.strip("\n").split(",")
|
122 |
+
if self.config.schema == "source":
|
123 |
+
example = {
|
124 |
+
"id": str(guid),
|
125 |
+
"src_sent": src_sent,
|
126 |
+
"norm_sent": norm_sent,
|
127 |
+
}
|
128 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
129 |
+
example = {
|
130 |
+
"id": str(guid),
|
131 |
+
"text_1": src_sent,
|
132 |
+
"text_2": norm_sent,
|
133 |
+
"text_1_name": "src_sent",
|
134 |
+
"text_2_name": "norm_sent",
|
135 |
+
}
|
136 |
+
yield guid, example
|