from pathlib import Path from typing import Dict, List, Tuple import datasets from datasets.download.download_manager import DownloadManager from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @inproceedings{flores-radev-2022-look, title = "Look Ma, Only 400 Samples! Revisiting the Effectiveness of Automatic N-Gram Rule Generation for Spelling Normalization in {F}ilipino", author = "Flores, Lorenzo Jaime and Radev, Dragomir", booktitle = "Proceedings of The Third Workshop on Simple and Efficient Natural Language Processing (SustaiNLP)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.sustainlp-1.5", pages = "29--35", } """ _LOCAL = False _LANGUAGES = ["fil"] _DATASETNAME = "filipino_slang_norm" _DESCRIPTION = """\ This dataset contains 398 abbreviated and/or contracted Filipino words used in Facebook comments made on weather advisories from a Philippine weather bureau. volunteers. """ _HOMEPAGE = "https://github.com/ljyflores/efficient-spelling-normalization-filipino" _LICENSE = Licenses.UNKNOWN.value _URLS = { "train": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/train_words.csv", "test": "https://github.com/ljyflores/efficient-spelling-normalization-filipino/raw/main/data/test_words.csv", } _SUPPORTED_TASKS = [Tasks.MULTILEXNORM] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class FilipinoSlangNormDataset(datasets.GeneratorBasedBuilder): """Filipino Slang Norm dataset by Flores and Radev (2022)""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) SEACROWD_SCHEMA_NAME = "t2t" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "src_sent": datasets.Value("string"), "norm_sent": datasets.Value("string"), } ) elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": features = schemas.text2text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" data_files = { "train": Path(dl_manager.download_and_extract(_URLS["train"])), "test": Path(dl_manager.download_and_extract(_URLS["test"])), } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_files["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_files["test"], "split": "test", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yield examples as (key, example) tuples""" with open(filepath, encoding="utf-8") as f: for guid, line in enumerate(f): src_sent, norm_sent = line.strip("\n").split(",") if self.config.schema == "source": example = { "id": str(guid), "src_sent": src_sent, "norm_sent": norm_sent, } elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": example = { "id": str(guid), "text_1": src_sent, "text_2": norm_sent, "text_1_name": "src_sent", "text_2_name": "norm_sent", } yield guid, example