|
import os |
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import itertools |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_CITATION = """\ |
|
@inproceedings{ding-etal-2022-globalwoz, |
|
title = "{G}lobal{W}o{Z}: Globalizing {M}ulti{W}o{Z} to Develop Multilingual Task-Oriented Dialogue Systems", |
|
author = "Ding, Bosheng and |
|
Hu, Junjie and |
|
Bing, Lidong and |
|
Aljunied, Mahani and |
|
Joty, Shafiq and |
|
Si, Luo and |
|
Miao, Chunyan", |
|
editor = "Muresan, Smaranda and |
|
Nakov, Preslav and |
|
Villavicencio, Aline", |
|
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = may, |
|
year = "2022", |
|
} |
|
""" |
|
|
|
_DATASETNAME = "globalwoz" |
|
|
|
_DESCRIPTION = """\ |
|
This is the data of the paper “GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems” accepted by ACL 2022. The dataset contains several sub-datasets in 20 languages and 3 schemes (F&E, E&F, F&F), including Indonesian (id), Thai (th), and Vietnamese (vi) language. The method is based on translating dialogue templates and filling them with local entities in the target language countries. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/bosheng2020/globalwoz" |
|
|
|
|
|
_LANGUAGES = ["ind", "tha", "vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = True |
|
|
|
_URLS = {} |
|
|
|
_SUPPORTED_TASKS = [Tasks.E2E_TASK_ORIENTED_DIALOGUE] |
|
|
|
_SOURCE_VERSION = "2.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def seacrowd_config_constructor(dial_type, lang, schema, version): |
|
if dial_type not in ["EandF", "FandE", "FandF"]: |
|
raise ValueError(f"Invalid dialogue type {dial_type}") |
|
|
|
if lang == "": |
|
raise ValueError(f"Invalid lang {lang}") |
|
|
|
if schema not in ["source", "seacrowd_tod"]: |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
return SEACrowdConfig( |
|
name="globalwoz_{dial_type}_{lang}_{schema}".format(dial_type=dial_type, lang=lang, schema=schema), |
|
version=datasets.Version(version), |
|
description="GlobalWoZ schema for {schema}: {dial_type}_{lang}".format(schema=schema, dial_type=dial_type, lang=lang), |
|
schema=schema, |
|
subset_id="globalwoz_{dial_type}_{lang}".format(dial_type=dial_type, lang=lang), |
|
) |
|
|
|
|
|
class GlobalWoZ(datasets.GeneratorBasedBuilder): |
|
"""This is the data of the paper “GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems” accepted by ACL 2022. |
|
The dataset contains several sub-datasets in 20 languages and 3 schemes (F&E, E&F, F&F), including Indonesian (id), Thai (th), |
|
and Vietnamese (vi) language. The method is based on translating dialogue templates and filling them with local entities in the target language countries. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
seacrowd_config_constructor(tod_format, lang, schema, _SOURCE_VERSION if schema == "source" else _SEACROWD_VERSION) for tod_format, lang, schema in itertools.product(("EandF", "FandE", "FandF"), ("id", "th", "vi"), ("source", "seacrowd_tod")) |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"goal": { |
|
"attraction": datasets.Value("string"), |
|
"hospital": datasets.Value("string"), |
|
"hotel": datasets.Value("string"), |
|
"police": datasets.Value("string"), |
|
"restaurant": datasets.Value("string"), |
|
"taxi": datasets.Value("string"), |
|
"train": datasets.Value("string"), |
|
}, |
|
"log": [ |
|
{ |
|
"dialog_act": datasets.Value("string"), |
|
"metadata": datasets.Value("string"), |
|
"span_info": [[datasets.Value("string")]], |
|
"text": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_tod": |
|
features = schemas.tod_features |
|
else: |
|
raise NotImplementedError() |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
_split_generators = [] |
|
|
|
type_and_lang = {"dial_type": self.config.subset_id.split("_")[1].replace("and", "&"), "lang": self.config.subset_id.split("_")[2]} |
|
|
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
if not os.path.exists(os.path.join(data_dir, f"{type_and_lang['dial_type']}_{type_and_lang['lang']}.json")): |
|
raise FileNotFoundError() |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
|
|
"filepath": os.path.join(data_dir, f"{type_and_lang['dial_type']}_{type_and_lang['lang']}.json"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, "r+", encoding="utf8") as fw: |
|
data = json.load(fw) |
|
|
|
if self.config.schema == "source": |
|
for idx, tod_dialogue in enumerate(data.values()): |
|
example = {} |
|
example["id"] = str(idx) |
|
example["goal"] = {} |
|
|
|
for goal_key in ["attraction", "hospital", "hotel", "police", "restaurant", "taxi", "train"]: |
|
example["goal"][goal_key] = json.dumps(tod_dialogue["goal"][goal_key]) |
|
example["log"] = [] |
|
|
|
for dial_log in tod_dialogue["log"]: |
|
dial = {} |
|
dial["dialog_act"] = json.dumps(dial_log["dialog_act"]) |
|
dial["metadata"] = json.dumps(dial_log["metadata"]) |
|
for i in range(len(dial_log["span_info"])): |
|
for j in range(len(dial_log["span_info"][i])): |
|
dial_log["span_info"][i][j] = str(dial_log["span_info"][i][j]) |
|
dial["span_info"] = [[str(span)] if isinstance(span, str) else span for span in dial_log["span_info"]] |
|
dial["text"] = dial_log["text"] |
|
|
|
example["log"].append(dial) |
|
|
|
yield example["id"], example |
|
|
|
elif self.config.schema == "seacrowd_tod": |
|
for idx, tod_dialogue in enumerate(data.values()): |
|
example = {} |
|
example["dialogue_idx"] = idx |
|
|
|
dialogue = [] |
|
|
|
for turn, i in enumerate(range(0, len(tod_dialogue["log"]) + 2, 2)): |
|
dial = {} |
|
dial["turn_idx"] = turn |
|
|
|
|
|
dial["system_utterance"] = "" |
|
dial["system_acts"] = [] |
|
if turn != 0: |
|
dial["system_utterance"] = tod_dialogue["log"][i - 1]["text"] |
|
if i < len(tod_dialogue["log"]): |
|
|
|
|
|
for acts in tod_dialogue["log"][i]["dialog_act"].values(): |
|
for act in acts: |
|
dial["system_acts"].append([act[0]]) |
|
|
|
|
|
dial["turn_label"] = [] |
|
dial["belief_state"] = [] |
|
if i == len(tod_dialogue["log"]): |
|
|
|
dial["user_utterance"] = "" |
|
else: |
|
dial["user_utterance"] = tod_dialogue["log"][i]["text"] |
|
|
|
|
|
for span in tod_dialogue["log"][i]["span_info"]: |
|
if span[0].split("-")[1] == "request": |
|
dial["belief_state"].append({"slots": [["slot", span[1]]], "act": "request"}) |
|
else: |
|
dial["belief_state"].append({"slots": [[span[1], span[2]]], "act": span[0].split("-")[1]}) |
|
|
|
|
|
dialogue.append(dial) |
|
|
|
example["dialogue"] = dialogue |
|
|
|
yield example["dialogue_idx"], example |
|
|