globalwoz / globalwoz.py
holylovenia's picture
Upload globalwoz.py with huggingface_hub
8a6c69b verified
raw
history blame
10 kB
import os
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import itertools
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, Licenses
_CITATION = """\
@inproceedings{ding-etal-2022-globalwoz,
title = "{G}lobal{W}o{Z}: Globalizing {M}ulti{W}o{Z} to Develop Multilingual Task-Oriented Dialogue Systems",
author = "Ding, Bosheng and
Hu, Junjie and
Bing, Lidong and
Aljunied, Mahani and
Joty, Shafiq and
Si, Luo and
Miao, Chunyan",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
}
"""
_DATASETNAME = "globalwoz"
_DESCRIPTION = """\
This is the data of the paper “GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems” accepted by ACL 2022. The dataset contains several sub-datasets in 20 languages and 3 schemes (F&E, E&F, F&F), including Indonesian (id), Thai (th), and Vietnamese (vi) language. The method is based on translating dialogue templates and filling them with local entities in the target language countries.
"""
_HOMEPAGE = "https://github.com/bosheng2020/globalwoz"
_LANGUAGES = ["ind", "tha", "vie"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = True
_URLS = {}
_SUPPORTED_TASKS = [Tasks.E2E_TASK_ORIENTED_DIALOGUE]
_SOURCE_VERSION = "2.0.0"
_SEACROWD_VERSION = "2024.06.20"
def seacrowd_config_constructor(dial_type, lang, schema, version):
if dial_type not in ["EandF", "FandE", "FandF"]:
raise ValueError(f"Invalid dialogue type {dial_type}")
if lang == "":
raise ValueError(f"Invalid lang {lang}")
if schema not in ["source", "seacrowd_tod"]:
raise ValueError(f"Invalid schema: {schema}")
return SEACrowdConfig(
name="globalwoz_{dial_type}_{lang}_{schema}".format(dial_type=dial_type, lang=lang, schema=schema),
version=datasets.Version(version),
description="GlobalWoZ schema for {schema}: {dial_type}_{lang}".format(schema=schema, dial_type=dial_type, lang=lang),
schema=schema,
subset_id="globalwoz_{dial_type}_{lang}".format(dial_type=dial_type, lang=lang),
)
class GlobalWoZ(datasets.GeneratorBasedBuilder):
"""This is the data of the paper “GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented Dialogue Systems” accepted by ACL 2022.
The dataset contains several sub-datasets in 20 languages and 3 schemes (F&E, E&F, F&F), including Indonesian (id), Thai (th),
and Vietnamese (vi) language. The method is based on translating dialogue templates and filling them with local entities in the target language countries.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
seacrowd_config_constructor(tod_format, lang, schema, _SOURCE_VERSION if schema == "source" else _SEACROWD_VERSION) for tod_format, lang, schema in itertools.product(("EandF", "FandE", "FandF"), ("id", "th", "vi"), ("source", "seacrowd_tod"))
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"goal": {
"attraction": datasets.Value("string"),
"hospital": datasets.Value("string"),
"hotel": datasets.Value("string"),
"police": datasets.Value("string"),
"restaurant": datasets.Value("string"),
"taxi": datasets.Value("string"),
"train": datasets.Value("string"),
},
"log": [
{
"dialog_act": datasets.Value("string"),
"metadata": datasets.Value("string"),
"span_info": [[datasets.Value("string")]],
"text": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "seacrowd_tod":
features = schemas.tod_features
else:
raise NotImplementedError()
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
_split_generators = []
type_and_lang = {"dial_type": self.config.subset_id.split("_")[1].replace("and", "&"), "lang": self.config.subset_id.split("_")[2]} # globalwoz_{dial_type}_{lang}
if self.config.data_dir is None:
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.")
else:
data_dir = self.config.data_dir
if not os.path.exists(os.path.join(data_dir, f"{type_and_lang['dial_type']}_{type_and_lang['lang']}.json")):
raise FileNotFoundError()
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
# "filepath": data_dir + f"_{type_and_lang['dial_type']}_{type_and_lang['lang']}.json",
"filepath": os.path.join(data_dir, f"{type_and_lang['dial_type']}_{type_and_lang['lang']}.json"),
"split": "train",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
# For local datasets you will have access to self.config.data_dir and self.config.data_files
with open(filepath, "r+", encoding="utf8") as fw:
data = json.load(fw)
if self.config.schema == "source":
for idx, tod_dialogue in enumerate(data.values()):
example = {}
example["id"] = str(idx)
example["goal"] = {}
for goal_key in ["attraction", "hospital", "hotel", "police", "restaurant", "taxi", "train"]:
example["goal"][goal_key] = json.dumps(tod_dialogue["goal"][goal_key])
example["log"] = []
for dial_log in tod_dialogue["log"]:
dial = {}
dial["dialog_act"] = json.dumps(dial_log["dialog_act"])
dial["metadata"] = json.dumps(dial_log["metadata"])
for i in range(len(dial_log["span_info"])):
for j in range(len(dial_log["span_info"][i])):
dial_log["span_info"][i][j] = str(dial_log["span_info"][i][j]) # casting to str
dial["span_info"] = [[str(span)] if isinstance(span, str) else span for span in dial_log["span_info"]]
dial["text"] = dial_log["text"]
example["log"].append(dial)
yield example["id"], example
elif self.config.schema == "seacrowd_tod":
for idx, tod_dialogue in enumerate(data.values()):
example = {}
example["dialogue_idx"] = idx
dialogue = []
# NOTE: the dialogue always started with `user` as first utterance
for turn, i in enumerate(range(0, len(tod_dialogue["log"]) + 2, 2)):
dial = {}
dial["turn_idx"] = turn
# system_utterance properties
dial["system_utterance"] = ""
dial["system_acts"] = []
if turn != 0:
dial["system_utterance"] = tod_dialogue["log"][i - 1]["text"]
if i < len(tod_dialogue["log"]):
# NOTE: "system_acts will be populated with the `dialog_act` from the user utterance in the original dataset, as our schema dictates
# that `system_acts` should represent the system's intended actions based on the user's utterance."
for acts in tod_dialogue["log"][i]["dialog_act"].values():
for act in acts:
dial["system_acts"].append([act[0]])
# user_utterance properties
dial["turn_label"] = [] # left as an empty array
dial["belief_state"] = []
if i == len(tod_dialogue["log"]):
# case if turn_idx > len(dialogue) --> add dummy user_utterance
dial["user_utterance"] = ""
else:
dial["user_utterance"] = tod_dialogue["log"][i]["text"]
# NOTE: "the belief_state will be populated with the `span_info` from the user utterance in the original dataset, as our schema dictates
# that `belief_state` should represent the system's belief state based on the user's utterance."
for span in tod_dialogue["log"][i]["span_info"]:
if span[0].split("-")[1] == "request": # Request action
dial["belief_state"].append({"slots": [["slot", span[1]]], "act": "request"})
else:
dial["belief_state"].append({"slots": [[span[1], span[2]]], "act": span[0].split("-")[1]})
# append to dialogue
dialogue.append(dial)
example["dialogue"] = dialogue
yield example["dialogue_idx"], example