File size: 7,581 Bytes
31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd 76c4fcd 31568bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
from pathlib import Path
from typing import Dict, List, Tuple
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas
import datasets
import json
import xml.etree.ElementTree as ET
from seacrowd.utils.configs import SEACrowdConfig
_CITATION = """\
@INPROCEEDINGS{8074648,
author={Suherik, Gilang Julian and Purwarianti, Ayu},
booktitle={2017 5th International Conference on Information and Communication Technology (ICoIC7)},
title={Experiments on coreference resolution for Indonesian language with lexical and shallow syntactic features},
year={2017},
volume={},
number={},
pages={1-5},
doi={10.1109/ICoICT.2017.8074648}}
"""
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False
_DATASETNAME = "id_coreference_resolution"
_DESCRIPTION = """\
We built Indonesian coreference resolution that solves not only pronoun referenced to proper noun, but also proper noun to proper noun and pronoun to pronoun.
The differences with the available Indonesian coreference resolution lay on the problem scope and features.
We conducted experiments using various features (lexical and shallow syntactic features) such as appositive feature, nearest candidate feature, direct sentence feature, previous and next word feature, and a lexical feature of first person.
We also modified the method to build the training set by selecting the negative examples by cross pairing every single markable that appear between antecedent and anaphor.
Compared with two available methods to build the training set, we conducted experiments using C45 algorithm.
Using 200 news sentences, the best experiment achieved 71.6% F-Measure score.
"""
_HOMEPAGE = "https://github.com/tugas-akhir-nlp/indonesian-coreference-resolution-cnn/tree/master/data"
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0"
_URLS = {
_DATASETNAME: {
"train": "https://raw.githubusercontent.com/tugas-akhir-nlp/indonesian-coreference-resolution-cnn/master/data/training/data.xml",
"test": "https://raw.githubusercontent.com/tugas-akhir-nlp/indonesian-coreference-resolution-cnn/master/data/testing/data.xml"
}
}
_SUPPORTED_TASKS = [Tasks.COREFERENCE_RESOLUTION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IDCoreferenceResolution(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="id_coreference_resolution_source",
version=SOURCE_VERSION,
description="ID Coreference Resolution source schema",
schema="source",
subset_id="id_coreference_resolution",
),
SEACrowdConfig(
name="id_coreference_resolution_seacrowd_kb",
version=SEACROWD_VERSION,
description="ID Coreference Resolution Nusantara schema",
schema="seacrowd_kb",
subset_id="id_coreference_resolution",
),
]
DEFAULT_CONFIG_NAME = "id_coreference_resolution_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"phrases": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": [
{
"word": datasets.Value("string"),
"ne": datasets.Value("string"),
"label": datasets.Value("string")
}
]
}
]
}
)
elif self.config.schema == "seacrowd_kb":
features = schemas.kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
"split": "test",
},
),
]
def _parse_phrase(self, phrase):
splitted_text = phrase.text.split(" ")
splitted_ne = []
if ("ne" in phrase.attrib):
splitted_ne = phrase.attrib["ne"].split("|")
words = []
for i in range(0, len(splitted_text)):
word = splitted_text[i].split("\\")
ne = ""
label = ""
if (i < len(splitted_ne)):
ne = splitted_ne[i]
if (len(word) > 1):
label = word[1]
words.append({
"word": word[0],
"ne": ne,
"label": label
})
id = ""
if ("id" in phrase.attrib):
id = phrase.attrib["id"]
return {
"id": id,
"type": phrase.attrib["type"],
"text": words
}
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
data = ET.parse(filepath).getroot()
for each_sentence in data:
sentence = {
"id": each_sentence.attrib["id"],
"phrases": [],
}
for phrase in each_sentence:
parsed_phrase = self._parse_phrase(phrase)
sentence["phrases"].append(parsed_phrase)
if self.config.schema == "source":
yield int(each_sentence.attrib["id"]), sentence
elif self.config.schema == "seacrowd_kb":
ex = {
"id": each_sentence.attrib["id"],
"passages": [],
"entities": [
{
"id": phrase["id"],
"type": phrase["type"],
"text": [text["word"] for text in phrase["text"]],
"offsets": [[0, len(text["word"])] for text in phrase["text"]],
"normalized": [{
"db_name": text["ne"],
"db_id": ""
} for text in phrase["text"]],
}
for phrase in sentence["phrases"]
],
"coreferences": [
{
"id": each_sentence.attrib["id"],
"entity_ids": [phrase["id"] for phrase in sentence["phrases"]]
}
],
"events": [],
"relations": [],
}
yield int(each_sentence.attrib["id"]), ex
|