holylovenia
commited on
Commit
•
abdffe7
1
Parent(s):
8d69d93
Upload id_sentiment_analysis.py with huggingface_hub
Browse files- id_sentiment_analysis.py +162 -0
id_sentiment_analysis.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict, List, Tuple
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
import pandas as pd
|
20 |
+
|
21 |
+
from seacrowd.utils import schemas
|
22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
23 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@misc{ridife2019idsa,
|
27 |
+
author = {Fe, Ridi},
|
28 |
+
title = {Indonesia Sentiment Analysis Dataset},
|
29 |
+
year = {2019},
|
30 |
+
publisher = {GitHub},
|
31 |
+
journal = {GitHub repository},
|
32 |
+
howpublished = {\\url{https://github.com/ridife/dataset-idsa}}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DATASETNAME = "id_sentiment_analysis"
|
37 |
+
|
38 |
+
_DESCRIPTION = """\
|
39 |
+
This dataset consists of 10806 labeled Indonesian tweets with their corresponding sentiment analysis: positive, negative, and neutral, up to 2019.
|
40 |
+
This dataset was developed in Cloud Experience Research Group, Gadjah Mada University.
|
41 |
+
There is no further explanation of the dataset. Contributor found this dataset after skimming through "Sentiment analysis of Indonesian datasets based on a hybrid deep-learning strategy" (Lin CH and Nuha U, 2023).
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = "https://ridi.staff.ugm.ac.id/2019/03/06/indonesia-sentiment-analysis-dataset/"
|
45 |
+
|
46 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
47 |
+
|
48 |
+
_LICENSE = Licenses.UNKNOWN.value
|
49 |
+
|
50 |
+
_LOCAL = False
|
51 |
+
|
52 |
+
_URLS = {
|
53 |
+
_DATASETNAME: "https://raw.githubusercontent.com/ridife/dataset-idsa/master/Indonesian%20Sentiment%20Twitter%20Dataset%20Labeled.csv",
|
54 |
+
}
|
55 |
+
|
56 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
|
57 |
+
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS]
|
58 |
+
|
59 |
+
_SOURCE_VERSION = "1.0.0"
|
60 |
+
|
61 |
+
_SEACROWD_VERSION = "2024.06.20"
|
62 |
+
|
63 |
+
|
64 |
+
class IdSentimentAnalysis(datasets.GeneratorBasedBuilder):
|
65 |
+
"""This dataset consists of 10806 labeled Indonesian tweets with their corresponding sentiment analysis: positive, negative, and neutral, up to 2019."""
|
66 |
+
|
67 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
68 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
69 |
+
|
70 |
+
BUILDER_CONFIGS = [
|
71 |
+
SEACrowdConfig(
|
72 |
+
name=f"{_DATASETNAME}_source",
|
73 |
+
version=SOURCE_VERSION,
|
74 |
+
description=f"{_DATASETNAME} source schema",
|
75 |
+
schema="source",
|
76 |
+
subset_id=f"{_DATASETNAME}",
|
77 |
+
),
|
78 |
+
]
|
79 |
+
|
80 |
+
seacrowd_schema_config: List[SEACrowdConfig] = []
|
81 |
+
|
82 |
+
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS:
|
83 |
+
|
84 |
+
seacrowd_schema_config.append(
|
85 |
+
SEACrowdConfig(
|
86 |
+
name=f"{_DATASETNAME}_{seacrowd_schema}",
|
87 |
+
version=SEACROWD_VERSION,
|
88 |
+
description=f"{_DATASETNAME} {seacrowd_schema} schema",
|
89 |
+
schema=f"{seacrowd_schema}",
|
90 |
+
subset_id=f"{_DATASETNAME}",
|
91 |
+
)
|
92 |
+
)
|
93 |
+
|
94 |
+
BUILDER_CONFIGS.extend(seacrowd_schema_config)
|
95 |
+
|
96 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
97 |
+
|
98 |
+
def _info(self) -> datasets.DatasetInfo:
|
99 |
+
|
100 |
+
if self.config.schema == "source":
|
101 |
+
features = datasets.Features(
|
102 |
+
{
|
103 |
+
"sentimen": datasets.Value("int32"),
|
104 |
+
"tweet": datasets.Value("string"),
|
105 |
+
}
|
106 |
+
)
|
107 |
+
|
108 |
+
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SENTIMENT_ANALYSIS]).lower()}":
|
109 |
+
features = schemas.text_features(label_names=[1, -1, 0])
|
110 |
+
|
111 |
+
else:
|
112 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
113 |
+
|
114 |
+
return datasets.DatasetInfo(
|
115 |
+
description=_DESCRIPTION,
|
116 |
+
features=features,
|
117 |
+
homepage=_HOMEPAGE,
|
118 |
+
license=_LICENSE,
|
119 |
+
citation=_CITATION,
|
120 |
+
)
|
121 |
+
|
122 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
123 |
+
"""Returns SplitGenerators."""
|
124 |
+
|
125 |
+
path = dl_manager.download_and_extract(_URLS[_DATASETNAME])
|
126 |
+
|
127 |
+
return [
|
128 |
+
datasets.SplitGenerator(
|
129 |
+
name=datasets.Split.TRAIN,
|
130 |
+
gen_kwargs={
|
131 |
+
"path": path,
|
132 |
+
},
|
133 |
+
),
|
134 |
+
]
|
135 |
+
|
136 |
+
def _generate_examples(self, path: str) -> Tuple[int, Dict]:
|
137 |
+
"""Yields examples as (key, example) tuples."""
|
138 |
+
|
139 |
+
idx = 0
|
140 |
+
|
141 |
+
if self.config.schema == "source":
|
142 |
+
df = pd.read_csv(path, delimiter="\t")
|
143 |
+
|
144 |
+
df.rename(columns={"Tweet": "tweet"}, inplace=True)
|
145 |
+
|
146 |
+
for _, row in df.iterrows():
|
147 |
+
yield idx, row.to_dict()
|
148 |
+
idx += 1
|
149 |
+
|
150 |
+
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SENTIMENT_ANALYSIS]).lower()}":
|
151 |
+
df = pd.read_csv(path, delimiter="\t")
|
152 |
+
|
153 |
+
df["id"] = df.index
|
154 |
+
df.rename(columns={"sentimen": "label"}, inplace=True)
|
155 |
+
df.rename(columns={"Tweet": "text"}, inplace=True)
|
156 |
+
|
157 |
+
for _, row in df.iterrows():
|
158 |
+
yield idx, row.to_dict()
|
159 |
+
idx += 1
|
160 |
+
|
161 |
+
else:
|
162 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|