holylovenia commited on
Commit
a20b20b
1 Parent(s): afcbb54

Upload id_short_answer_grading.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. id_short_answer_grading.py +195 -0
id_short_answer_grading.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pathlib import Path
3
+ from typing import Dict, List, Tuple
4
+
5
+ import datasets
6
+
7
+ from nusacrowd.nusa_datasets.id_short_answer_grading.utils.id_short_answer_grading_utils import \
8
+ create_saintek_and_soshum_dataset
9
+ from nusacrowd.utils import schemas
10
+ from nusacrowd.utils.configs import NusantaraConfig
11
+ from nusacrowd.utils.constants import Tasks
12
+
13
+ _CITATION = """\
14
+ @article{
15
+ JLK,
16
+ author = {Muh Haidir and Ayu Purwarianti},
17
+ title = { Short Answer Grading Using Contextual Word Embedding and Linear Regression},
18
+ journal = {Jurnal Linguistik Komputasional},
19
+ volume = {3},
20
+ number = {2},
21
+ year = {2020},
22
+ keywords = {},
23
+ abstract = {Abstract—One of the obstacles in an efficient MOOC is the evaluation of student answers, including the short answer grading which requires large effort from instructors to conduct it manually.
24
+ Thus, NLP research in short answer grading has been conducted in order to support the automation, using several techniques such as rule
25
+ and machine learning based. Here, we’ve conducted experiments on deep learning based short answer grading to compare the answer
26
+ representation and answer assessment method. In the answer representation, we compared word embedding and sentence embedding models
27
+ such as BERT, and its modification. In the answer assessment method, we use linear regression. There are 2 datasets that we used, available
28
+ English short answer grading dataset with 80 questions and 2442 to get the best configuration for model and Indonesian short answer grading
29
+ dataset with 36 questions and 9165 short answers as testing data. Here, we’ve collected Indonesian short answers for Biology and Geography
30
+ subjects from 534 respondents where the answer grading was done by 7 experts. The best root mean squared error for both dataset was achieved
31
+ by using BERT pretrained, 0.880 for English dataset dan 1.893 for Indonesian dataset.},
32
+ issn = {2621-9336}, pages = {54--61}, doi = {10.26418/jlk.v3i2.38},
33
+ url = {https://inacl.id/journal/index.php/jlk/article/view/38}
34
+ }\
35
+ """
36
+ _DATASETNAME = "id_short_answer_grading"
37
+
38
+ _DESCRIPTION = """\
39
+ Indonesian short answers for Biology and Geography subjects from 534 respondents where the answer grading was done by 7 experts.\
40
+ """
41
+
42
+ _HOMEPAGE = "https://github.com/AgeMagi/tugas-akhir"
43
+ _LOCAL = False
44
+ _LANGUAGES = ["ind"]
45
+
46
+ _LICENSE = "Unknown"
47
+
48
+ _URLS = {
49
+ "saintek": {
50
+ "train": {
51
+ "question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-saintek.csv",
52
+ "score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-saintek.csv",
53
+ },
54
+ "test": {
55
+ "question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-saintek-test.csv",
56
+ "score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-saintek-test.csv",
57
+ },
58
+ },
59
+ "soshum": {
60
+ "train": {
61
+ "question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-soshum.csv",
62
+ "score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-soshum.csv",
63
+ },
64
+ "test": {
65
+ "question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-soshum-test.csv",
66
+ "score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-soshum-test.csv",
67
+ },
68
+ },
69
+ }
70
+
71
+ _SUPPORTED_TASKS = [Tasks.SHORT_ANSWER_GRADING]
72
+
73
+ _SOURCE_VERSION = "1.0.0"
74
+
75
+ _NUSANTARA_VERSION = "1.0.0"
76
+
77
+
78
+ class IdShortAnswerGrading(datasets.GeneratorBasedBuilder):
79
+ """Indonesian short answers for Biology and Geography subjects from 534 respondents where the answer grading was done by 7 experts."""
80
+
81
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
82
+ NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
83
+
84
+ BUILDER_CONFIGS = [
85
+ NusantaraConfig(
86
+ name="id_short_answer_grading_source",
87
+ version=SOURCE_VERSION,
88
+ description="id_short_answer_grading source schema",
89
+ schema="source",
90
+ subset_id="id_short_answer_grading",
91
+ ),
92
+ NusantaraConfig(
93
+ name="id_short_answer_grading_nusantara_pairs_score",
94
+ version=NUSANTARA_VERSION,
95
+ description="id_short_answer_grading Nusantara schema",
96
+ schema="nusantara_pairs_score",
97
+ subset_id="id_short_answer_grading",
98
+ ),
99
+ ]
100
+
101
+ DEFAULT_CONFIG_NAME = "id_short_answer_grading_source"
102
+
103
+ def _info(self) -> datasets.DatasetInfo:
104
+ if self.config.schema == "source":
105
+ features = datasets.Features(
106
+ {
107
+ "index": datasets.Value("int64"),
108
+ "type-problem": datasets.Value("int64"),
109
+ "pertanyaan": datasets.Value("string"),
110
+ "kunci-jawaban": datasets.Value("string"),
111
+ "jawaban": datasets.Value("string"),
112
+ "score": datasets.Value("int64"),
113
+ }
114
+ )
115
+ elif self.config.schema == "nusantara_pairs_score":
116
+ features = schemas.pairs_features([0, 1, 2, 3, 4, 5])
117
+
118
+ return datasets.DatasetInfo(
119
+ description=_DESCRIPTION,
120
+ features=features,
121
+ homepage=_HOMEPAGE,
122
+ license=_LICENSE,
123
+ citation=_CITATION,
124
+ )
125
+
126
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
127
+ """Returns SplitGenerators."""
128
+ saintek_question = Path(dl_manager.download_and_extract(_URLS["saintek"]["train"]["question"]))
129
+ saintek_score = Path(dl_manager.download_and_extract(_URLS["saintek"]["train"]["score"]))
130
+ saintek_question_test = Path(dl_manager.download_and_extract(_URLS["saintek"]["test"]["question"]))
131
+ saintek_score_test = Path(dl_manager.download_and_extract(_URLS["saintek"]["test"]["score"]))
132
+
133
+ soshum_question = Path(dl_manager.download_and_extract(_URLS["soshum"]["train"]["question"]))
134
+ soshum_score = Path(dl_manager.download_and_extract(_URLS["soshum"]["train"]["score"]))
135
+ soshum_question_test = Path(dl_manager.download_and_extract(_URLS["soshum"]["test"]["question"]))
136
+ soshum_score_test = Path(dl_manager.download_and_extract(_URLS["soshum"]["test"]["score"]))
137
+
138
+ data_files = {
139
+ "saintek_question": saintek_question,
140
+ "saintek_score": saintek_score,
141
+ "saintek_question_test": saintek_question_test,
142
+ "saintek_score_test": saintek_score_test,
143
+ "soshum_question": soshum_question,
144
+ "soshum_score": soshum_score,
145
+ "soshum_question_test": soshum_question_test,
146
+ "soshum_score_test": soshum_score_test,
147
+ }
148
+
149
+ return [
150
+ datasets.SplitGenerator(
151
+ name=datasets.Split.TRAIN,
152
+ gen_kwargs={
153
+ "saintek_question": os.path.join(data_files["saintek_question"]),
154
+ "soshum_question": os.path.join(data_files["soshum_question"]),
155
+ "saintek_score": os.path.join(data_files["saintek_score"]),
156
+ "soshum_score": os.path.join(data_files["soshum_score"]),
157
+ "split": "train",
158
+ },
159
+ ),
160
+ datasets.SplitGenerator(
161
+ name=datasets.Split.TEST,
162
+ gen_kwargs={
163
+ "saintek_question": os.path.join(data_files["saintek_question_test"]),
164
+ "soshum_question": os.path.join(data_files["soshum_question_test"]),
165
+ "saintek_score": os.path.join(data_files["saintek_score_test"]),
166
+ "soshum_score": os.path.join(data_files["soshum_score_test"]),
167
+ "split": "test",
168
+ },
169
+ ),
170
+ ]
171
+
172
+ def _generate_examples(self, saintek_question: Path, soshum_question: Path, saintek_score: Path, soshum_score: Path, split: str) -> Tuple[int, Dict]:
173
+ """Yields examples as (key, example) tuples."""
174
+ df = create_saintek_and_soshum_dataset(saintek_question, soshum_question, saintek_score, soshum_score)
175
+ if self.config.schema == "source":
176
+ for row in df.itertuples():
177
+ entry = {
178
+ "index": row.index,
179
+ "type-problem": row.type_problem,
180
+ "pertanyaan": row.pertanyaan,
181
+ "kunci-jawaban": row.kunci_jawaban,
182
+ "jawaban": row.jawaban,
183
+ "score": row.score,
184
+ }
185
+ yield row.index, entry
186
+
187
+ elif self.config.schema == "nusantara_pairs_score":
188
+ for row in df.itertuples():
189
+ entry = {
190
+ "id": str(row.index),
191
+ "text_1": row.pertanyaan,
192
+ "text_2": row.jawaban,
193
+ "label": row.score,
194
+ }
195
+ yield row.index, entry