|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{ |
|
7065828, |
|
author={Trisedya, Bayu Distiawan and Inastra, Dyah}, |
|
booktitle={2014 International Conference on Advanced Computer Science and Information System}, |
|
title={Creating Indonesian-Javanese parallel corpora using wikipedia articles}, |
|
year={2014}, |
|
volume={}, |
|
number={}, |
|
pages={239-245}, |
|
doi={10.1109/ICACSIS.2014.7065828}} |
|
""" |
|
|
|
_DATASETNAME = "id_wiki_parallel" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind", "jav", "min", "sun"] |
|
_LOCAL = False |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is designed for machine translation task, specifically jav->ind, min->ind, sun->ind, and vice versa. The data are taken |
|
from sentences in Wikipedia. |
|
|
|
(from the publication abstract) |
|
Parallel corpora are necessary for multilingual researches especially in information retrieval (IR) and natural language processing (NLP). However, such corpora are hard to find, specifically for low-resources languages like ethnic |
|
languages. Parallel corpora of ethnic languages were usually collected manually. On the other hand, Wikipedia as a free online encyclopedia is supporting more and more languages each year, including ethnic languages in Indonesia. It has |
|
become one of the largest multilingual sites in World Wide Web that provides free distributed articles. In this paper, we explore a few sentence alignment methods which have been used before for another domain. We want to check whether |
|
Wikipedia can be used as one of the resources for collecting parallel corpora of Indonesian and Javanese, an ethnic language in Indonesia. We used two approaches of sentence alignment by treating Wikipedia as both parallel corpora and |
|
comparable corpora. In parallel corpora case, we used sentence length based and word correspondence methods. Meanwhile, |
|
we used the characteristics of hypertext links from Wikipedia in comparable corpora case. After the experiments, we can |
|
see that Wikipedia is useful enough for our purpose because both approaches gave positive results. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/dindainastra/indowikiparalelcorpora" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"jav": "https://raw.githubusercontent.com/dindainastra/indowikiparalelcorpora/main/manualsets/indojv-parallel.csv", |
|
"min": "https://raw.githubusercontent.com/dindainastra/indowikiparalelcorpora/main/manualsets/indomin-parallel.csv", |
|
"sun": "https://raw.githubusercontent.com/dindainastra/indowikiparalelcorpora/main/manualsets/indosun-parallel.csv", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdWikiParallel(datasets.GeneratorBasedBuilder): |
|
""" |
|
This dataset is designed for machine translation task, specifically jav->ind, min->ind, sun->ind, and vice versa. The data are |
|
taken from sentences in Wikipedia.""" |
|
|
|
ETHNIC_LANGUAGES = [lang for lang in _LANGUAGES if lang != "ind"] |
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="{dataset_name}_{src}_ind_source".format(dataset_name=_DATASETNAME, src=src), |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="ID Wiki Parallel source schema for {src} to ind and ind to {src}".format(src=src), |
|
schema="source", |
|
subset_id="{dataset_name}_{src}_ind".format(dataset_name=_DATASETNAME, src=src), |
|
) |
|
for src in ETHNIC_LANGUAGES |
|
] + [ |
|
SEACrowdConfig( |
|
name="{dataset_name}_{src}_ind_seacrowd_t2t".format(dataset_name=_DATASETNAME, src=src), |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="ID Wiki Parallel Nusantara schema for {src} to ind and ind to {src}".format(src=src), |
|
schema="seacrowd_t2t", |
|
subset_id="{dataset_name}_{src}_ind".format(dataset_name=_DATASETNAME, src=src), |
|
) |
|
for src in ETHNIC_LANGUAGES |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_wiki_parallel_jav_ind_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"id": datasets.Value("string"), "text_1": datasets.Value("string"), "text_2": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
split_config_name = self.config.name.split("_") |
|
src = split_config_name[3] |
|
data_file = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME][src])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_file, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
split_config_name = self.config.name.split("_") |
|
src = split_config_name[3] |
|
df = pd.read_csv(filepath, encoding="utf8").reset_index() |
|
|
|
for id, row in df.iterrows(): |
|
src_txt = row[1] |
|
tgt_txt = row[2] |
|
if self.config.schema == "source": |
|
yield id, {"id": str(id), "text_1": src_txt, "text_2": tgt_txt} |
|
elif self.config.schema == "seacrowd_t2t": |
|
yield id, {"id": str(id), "text_1": src_txt, "text_2": tgt_txt, "text_1_name": src, "text_2_name": "ind"} |
|
|