Datasets:

Languages:
Indonesian
ArXiv:
License:
File size: 5,099 Bytes
c2e6187
 
 
 
 
 
 
 
 
 
 
 
 
bbd3a53
 
 
 
 
 
 
 
c2e6187
 
 
 
 
 
 
 
 
bbd3a53
c2e6187
 
 
bbd3a53
 
c2e6187
 
 
 
bbd3a53
c2e6187
bbd3a53
c2e6187
bbd3a53
c2e6187
bbd3a53
 
 
c2e6187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

---
license: mit
language: 
- ind
pretty_name: Idner News 2K
task_categories: 
- named-entity-recognition
tags: 
- named-entity-recognition
---

A dataset of Indonesian News for Named-Entity Recognition task.
This dataset re-annotated the dataset previously provided by Syaifudin & Nurwidyantoro (2016)
(https://github.com/yusufsyaifudin/Indonesia-ner) with a more standardized NER tags.
There are three subsets, namely train.txt, dev.txt, and test.txt.
Each file consists of three columns which are Tokens, PoS Tag, and NER Tag respectively.
The format is following CoNLL dataset. The NER tag use the IOB format.
The PoS tag using UDPipe (http://ufal.mff.cuni.cz/udpipe),
a pipeline for tokenization, tagging, lemmatization and dependency parsing
whose model is trained on UD Treebanks.


## Languages

ind

## Supported Tasks

Named Entity Recognition

## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/idner_news_2k", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("idner_news_2k", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("idner_news_2k"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```

More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).


## Dataset Homepage

[https://github.com/khairunnisaor/idner-news-2k](https://github.com/khairunnisaor/idner-news-2k)

## Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

## Dataset License

MIT (mit)

## Citation

If you are using the **Idner News 2K** dataloader in your work, please cite the following:
```
@inproceedings{khairunnisa-etal-2020-towards,
    title = "Towards a Standardized Dataset on {I}ndonesian Named Entity Recognition",
    author = "Khairunnisa, Siti Oryza  and
      Imankulova, Aizhan  and
      Komachi, Mamoru",
    editor = "Shmueli, Boaz  and
      Huang, Yin Jou",
    booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
      and the 10th International Joint Conference on Natural Language Processing: Student Research Workshop",
    month = dec,
    year = "2020",
    address = "Suzhou, China",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.aacl-srw.10",
    pages = "64--71",
    abstract = "In recent years, named entity recognition (NER) tasks in the Indonesian language
    have undergone extensive development. There are only a few corpora for Indonesian NER;
    hence, recent Indonesian NER studies have used diverse datasets. Although an open dataset is available,
    it includes only approximately 2,000 sentences and contains inconsistent annotations,
    thereby preventing accurate training of NER models without reliance on pre-trained models.
    Therefore, we re-annotated the dataset and compared the two annotations{'} performance
    using the Bidirectional Long Short-Term Memory and Conditional Random Field (BiLSTM-CRF) approach.
    Fixing the annotation yielded a more consistent result for the organization tag and improved the prediction score
    by a large margin. Moreover, to take full advantage of pre-trained models, we compared different feature embeddings
    to determine their impact on the NER task for the Indonesian language.",
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```