File size: 6,954 Bytes
06df0f5 c222c5a 06df0f5 c222c5a 06df0f5 c222c5a 06df0f5 c222c5a 06df0f5 c222c5a 06df0f5 c222c5a 06df0f5 c222c5a 06df0f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from itertools import chain
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks
_CITATION = """\
@inproceedings{wibowo-etal-2021-indocollex,
title = "{I}ndo{C}ollex: A Testbed for Morphological Transformation of {I}ndonesian Word Colloquialism",
author = {Wibowo, Haryo Akbarianto and Nityasya, Made Nindyatama and Aky{\"u}rek, Afra Feyza and Fitriany, Suci and Aji, Alham Fikri and Prasojo, Radityo Eko and Wijaya, Derry Tanti},
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.280",
doi = "10.18653/v1/2021.findings-acl.280",
pages = "3170--3183",
}"""
_LANGUAGES = ["ind"]
_LOCAL = False
_DATASETNAME = "indocollex"
_DESCRIPTION = """\
IndoCollex: A Testbed for Morphological Transformation of Indonesian Colloquial Words
"""
_HOMEPAGE = "https://github.com/haryoa/indo-collex"
_LICENSE = "CC BY-SA 4.0"
_URLS = {
_DATASETNAME: {
"train": "https://github.com/haryoa/indo-collex/raw/main/data/full.csv",
},
f"{_DATASETNAME}_f2i": {
"train": "https://github.com/haryoa/indo-collex/raw/main/data/formal_to_informal/train.csv",
"dev": "https://github.com/haryoa/indo-collex/raw/main/data/formal_to_informal/dev.csv",
"test": "https://github.com/haryoa/indo-collex/raw/main/data/formal_to_informal/test.csv",
},
f"{_DATASETNAME}_i2f": {
"train": "https://github.com/haryoa/indo-collex/raw/main/data/informal_to_formal/train.csv",
"dev": "https://github.com/haryoa/indo-collex/raw/main/data/informal_to_formal/dev.csv",
"test": "https://github.com/haryoa/indo-collex/raw/main/data/informal_to_formal/test.csv",
},
}
_SUPPORTED_TASKS = [Tasks.MORPHOLOGICAL_INFLECTION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class NewDataset(datasets.GeneratorBasedBuilder):
"""IndoCollex: A Testbed for Morphological Transformation of Indonesian Colloquial Words"""
label_classes = ["acronym", "affixation", "disemvoweling", "rev", "shorten", "sound-alter", "space-dash"]
BUILDER_CONFIGS = list(
chain(
*[
[
SEACrowdConfig(
name=f"{_DATASETNAME}{suffix}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}{suffix}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}{suffix}_seacrowd_pairs_multi",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} Nusantara schema",
schema="seacrowd_pairs_multi",
subset_id=f"{_DATASETNAME}{suffix}",
),
]
for suffix in ["", "_f2i", "_i2f"]
]
)
)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"no": datasets.Value("string"),
"transformed": datasets.Value("string"),
"original-for": datasets.Value("string"),
"transformation": datasets.Value("string"),
}
)
elif self.config.schema == "seacrowd_pairs_multi":
features = schemas.pairs_multi_features(self.label_classes)
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[self.config.subset_id]
data_paths = dl_manager.download(urls)
ret = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_paths["train"]},
)
]
if len(data_paths) > 1:
ret.extend(
[
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_paths["test"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_paths["dev"]},
),
]
)
return ret
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, "r", encoding="utf8") as f:
dataset = list(map(lambda l: l.rstrip("\r\n").split(","), f))
_assert = set(map(len, dataset))
if _assert != {4}:
raise AssertionError(f"Expecting exactly 4 fields (no, transformed, base, label), but found: {_assert}")
_assert = dataset[0]
source_columns = ["no", "transformed", "original-for", "transformation"]
if _assert != source_columns:
raise AssertionError(f"The expected header is not found. {_assert}")
dataset = dataset[1:]
if self.config.schema == "source":
for key, ex in enumerate(dataset):
yield key, dict(zip(source_columns, ex))
elif self.config.schema == "seacrowd_pairs_multi":
for key, ex in enumerate(dataset):
yield key, {
"id": str(key),
"text_1": ex[2],
"text_2": ex[1],
"label": [ex[3]],
}
|