File size: 6,954 Bytes
06df0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222c5a
 
 
06df0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222c5a
06df0f5
 
 
 
 
 
 
 
 
 
 
c222c5a
06df0f5
 
 
 
 
 
c222c5a
 
 
06df0f5
c222c5a
06df0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222c5a
06df0f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c222c5a
06df0f5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from itertools import chain
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks

_CITATION = """\
@inproceedings{wibowo-etal-2021-indocollex,
    title = "{I}ndo{C}ollex: A Testbed for Morphological Transformation of {I}ndonesian Word Colloquialism",
    author = {Wibowo, Haryo Akbarianto  and Nityasya, Made Nindyatama  and Aky{\"u}rek, Afra Feyza  and Fitriany, Suci  and Aji, Alham Fikri  and Prasojo, Radityo Eko  and Wijaya, Derry Tanti},
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.280",
    doi = "10.18653/v1/2021.findings-acl.280",
    pages = "3170--3183",
}"""

_LANGUAGES = ["ind"]
_LOCAL = False

_DATASETNAME = "indocollex"

_DESCRIPTION = """\
IndoCollex: A Testbed for Morphological Transformation of Indonesian Colloquial Words
"""

_HOMEPAGE = "https://github.com/haryoa/indo-collex"

_LICENSE = "CC BY-SA 4.0"

_URLS = {
    _DATASETNAME: {
        "train": "https://github.com/haryoa/indo-collex/raw/main/data/full.csv",
    },
    f"{_DATASETNAME}_f2i": {
        "train": "https://github.com/haryoa/indo-collex/raw/main/data/formal_to_informal/train.csv",
        "dev": "https://github.com/haryoa/indo-collex/raw/main/data/formal_to_informal/dev.csv",
        "test": "https://github.com/haryoa/indo-collex/raw/main/data/formal_to_informal/test.csv",
    },
    f"{_DATASETNAME}_i2f": {
        "train": "https://github.com/haryoa/indo-collex/raw/main/data/informal_to_formal/train.csv",
        "dev": "https://github.com/haryoa/indo-collex/raw/main/data/informal_to_formal/dev.csv",
        "test": "https://github.com/haryoa/indo-collex/raw/main/data/informal_to_formal/test.csv",
    },
}

_SUPPORTED_TASKS = [Tasks.MORPHOLOGICAL_INFLECTION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class NewDataset(datasets.GeneratorBasedBuilder):
    """IndoCollex: A Testbed for Morphological Transformation of Indonesian Colloquial Words"""

    label_classes = ["acronym", "affixation", "disemvoweling", "rev", "shorten", "sound-alter", "space-dash"]

    BUILDER_CONFIGS = list(
        chain(
            *[
                [
                    SEACrowdConfig(
                        name=f"{_DATASETNAME}{suffix}_source",
                        version=datasets.Version(_SOURCE_VERSION),
                        description=f"{_DATASETNAME} source schema",
                        schema="source",
                        subset_id=f"{_DATASETNAME}{suffix}",
                    ),
                    SEACrowdConfig(
                        name=f"{_DATASETNAME}{suffix}_seacrowd_pairs_multi",
                        version=datasets.Version(_SEACROWD_VERSION),
                        description=f"{_DATASETNAME} Nusantara schema",
                        schema="seacrowd_pairs_multi",
                        subset_id=f"{_DATASETNAME}{suffix}",
                    ),
                ]
                for suffix in ["", "_f2i", "_i2f"]
            ]
        )
    )

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "no": datasets.Value("string"),
                    "transformed": datasets.Value("string"),
                    "original-for": datasets.Value("string"),
                    "transformation": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_pairs_multi":
            features = schemas.pairs_multi_features(self.label_classes)

        else:
            raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[self.config.subset_id]
        data_paths = dl_manager.download(urls)

        ret = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_paths["train"]},
            )
        ]

        if len(data_paths) > 1:
            ret.extend(
                [
                    datasets.SplitGenerator(
                        name=datasets.Split.TEST,
                        gen_kwargs={"filepath": data_paths["test"]},
                    ),
                    datasets.SplitGenerator(
                        name=datasets.Split.VALIDATION,
                        gen_kwargs={"filepath": data_paths["dev"]},
                    ),
                ]
            )

        return ret

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        with open(filepath, "r", encoding="utf8") as f:
            dataset = list(map(lambda l: l.rstrip("\r\n").split(","), f))

        _assert = set(map(len, dataset))
        if _assert != {4}:
            raise AssertionError(f"Expecting exactly 4 fields (no, transformed, base, label), but found: {_assert}")

        _assert = dataset[0]
        source_columns = ["no", "transformed", "original-for", "transformation"]
        if _assert != source_columns:
            raise AssertionError(f"The expected header is not found. {_assert}")

        dataset = dataset[1:]

        if self.config.schema == "source":
            for key, ex in enumerate(dataset):
                yield key, dict(zip(source_columns, ex))

        elif self.config.schema == "seacrowd_pairs_multi":
            for key, ex in enumerate(dataset):
                yield key, {
                    "id": str(key),
                    "text_1": ex[2],
                    "text_2": ex[1],
                    "label": [ex[3]],
                }