|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
try: |
|
from typing import TypedDict |
|
except: |
|
from typing_extensions import TypedDict |
|
|
|
import datasets |
|
|
|
from nusacrowd.nusa_datasets.indocoref.utils.text_preprocess import \ |
|
TextPreprocess |
|
from nusacrowd.utils import schemas |
|
from nusacrowd.utils.configs import NusantaraConfig |
|
from nusacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{artari-etal-2021-multi, |
|
title = {A Multi-Pass Sieve Coreference Resolution for {I}ndonesian}, |
|
author = {Artari, Valentina Kania Prameswara and Mahendra, Rahmad and Jiwanggi, Meganingrum Arista and Anggraito, Adityo and Budi, Indra}, |
|
year = 2021, |
|
month = sep, |
|
booktitle = {Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)}, |
|
publisher = {INCOMA Ltd.}, |
|
address = {Held Online}, |
|
pages = {79--85}, |
|
url = {https://aclanthology.org/2021.ranlp-1.10}, |
|
abstract = {Coreference resolution is an NLP task to find out whether the set of referring expressions belong to the same concept in discourse. A multi-pass sieve is a deterministic coreference model that implements several layers of sieves, where each sieve takes a pair of correlated mentions from a collection of non-coherent mentions. The multi-pass sieve is based on the principle of high precision, followed by increased recall in each sieve. In this work, we examine the portability of the multi-pass sieve coreference resolution model to the Indonesian language. We conduct the experiment on 201 Wikipedia documents and the multi-pass sieve system yields 72.74{\%} of MUC F-measure and 52.18{\%} of BCUBED F-measure.} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indocoref" |
|
_DESCRIPTION = """\ |
|
Dataset contains articles from Wikipedia Bahasa Indonesia which fulfill these conditions: |
|
- The pages contain many noun phrases, which the authors subjectively pick: (i) fictional plots, e.g., subtitles for films, |
|
TV show episodes, and novel stories; (ii) biographies (incl. fictional characters); and (iii) historical events or important events. |
|
- The pages contain significant variation of pronoun and named-entity. We count the number of first, second, third person pronouns, |
|
and clitic pronouns in the document by applying string matching.We examine the number |
|
of named-entity using the Stanford CoreNLP |
|
NER Tagger (Manning et al., 2014) with a |
|
model trained from the Indonesian corpus |
|
taken from Alfina et al. (2016). |
|
The Wikipedia texts have length of 500 to |
|
2000 words. |
|
We sample 201 of pages from subset of filtered |
|
Wikipedia pages. We hire five annotators who are |
|
undergraduate student in Linguistics department. |
|
They are native in Indonesian. Annotation is carried out using the Script d’Annotation des Chanes |
|
de Rfrence (SACR), a web-based Coreference resolution annotation tool developed by Oberle (2018). |
|
From the 201 texts, there are 16,460 mentions |
|
tagged by the annotators |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/valentinakania/indocoref/" |
|
_LICENSE = "MIT" |
|
_URLS = { |
|
_DATASETNAME: "https://github.com/valentinakania/indocoref/archive/refs/heads/main.zip", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.COREFERENCE_RESOLUTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_NUSANTARA_VERSION = "1.0.0" |
|
|
|
|
|
class Indocoref(datasets.GeneratorBasedBuilder): |
|
"""A collection of 210 curated articles from Wikipedia Bahasa Indonesia with Coreference Annotations""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NusantaraConfig( |
|
name="indocoref_source", |
|
version=SOURCE_VERSION, |
|
description="Indocoref source schema", |
|
schema="source", |
|
subset_id="indocoref", |
|
), |
|
NusantaraConfig( |
|
name="indocoref_nusantara_kb", |
|
version=NUSANTARA_VERSION, |
|
description="Indocoref Nusantara schema", |
|
schema="nusantara_kb", |
|
subset_id="indocoref", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indocoref_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"passage": datasets.Value("string"), |
|
"mentions": [ |
|
{ |
|
"id": datasets.Value("int64"), |
|
|
|
"labels": datasets.Sequence(datasets.Value("string")), |
|
"class": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"pronoun": datasets.Value("bool"), |
|
"proper": datasets.Value("bool"), |
|
"sent": datasets.Value("int32"), |
|
"cluster": datasets.Value("int32"), |
|
"per": datasets.Value("bool"), |
|
"org": datasets.Value("bool"), |
|
"loc": datasets.Value("bool"), |
|
"ner": datasets.Value("bool"), |
|
|
|
|
|
|
|
|
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "nusantara_kb": |
|
features = schemas.kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
class ReadPassage(TypedDict): |
|
passage: str |
|
annotated: str |
|
mentions: List[any] |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
base_path = Path(dl_manager.download_and_extract(urls)) / "indocoref-main" / "data" |
|
passage_path = base_path / "passage" |
|
annotated_path = base_path / "annotated" |
|
mentions_per_file = TextPreprocess(annotated_path).run(0) |
|
|
|
data: List[self.ReadPassage] = [] |
|
for passage_file_name, annotated_file_name in zip(sorted(os.listdir(passage_path)), sorted(os.listdir(annotated_path))): |
|
passage_file_path, annotated_file_path = passage_path / passage_file_name, annotated_path / annotated_file_name |
|
|
|
if os.path.isfile(passage_file_path) and os.path.isfile(annotated_file_path): |
|
with open(passage_file_path, "r") as fpassage, open(annotated_file_path, "r") as fannotated: |
|
data.append(self.ReadPassage(passage=fpassage.read(), annotated=fannotated.read(), mentions=mentions_per_file[annotated_file_name])) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data": data, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
class DisjointSet: |
|
parent = {} |
|
|
|
def __init__(self, items): |
|
for item in items: |
|
self.parent[item] = item |
|
|
|
def find(self, k): |
|
if self.parent[k] == k: |
|
return k |
|
return self.find(self.parent[k]) |
|
|
|
def union(self, a, b): |
|
x = self.find(a) |
|
y = self.find(b) |
|
self.parent[x] = y |
|
|
|
def _generate_examples(self, data: List[ReadPassage], split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
if self.config.schema == "source": |
|
for index, example in enumerate(data): |
|
passage, mentions = example["passage"], example["mentions"] |
|
row = { |
|
"id": index, |
|
"passage": passage, |
|
"mentions": [ |
|
{ |
|
"id": mention["id"], |
|
"labels": mention["labels"], |
|
"class": mention["class"], |
|
"text": mention["text"], |
|
"pronoun": mention["pronoun"], |
|
"proper": mention["proper"], |
|
"sent": mention["sent"], |
|
"cluster": mention["cluster"], |
|
"per": mention["per"], |
|
"org": mention["org"], |
|
"loc": mention["loc"], |
|
"ner": mention["ner"], |
|
} |
|
for mention in mentions |
|
], |
|
} |
|
yield index, row |
|
|
|
elif self.config.schema == "nusantara_kb": |
|
for index, example in enumerate(data): |
|
passage, mentions = example["passage"], example["mentions"] |
|
|
|
passage = passage.replace(" \n", " ") |
|
passage = passage.replace("\n", " ") |
|
all_labels = {label for mention in mentions for label in mention["labels"]} |
|
labels_disjoint_set = self.DisjointSet(all_labels) |
|
for mention in mentions: |
|
for i in range(1, len(mention["labels"])): |
|
labels_disjoint_set.union(mention["labels"][i], mention["labels"][i - 1]) |
|
coreferences = {} |
|
for mention in mentions: |
|
coreference_id = labels_disjoint_set.find(mention["labels"][0]) |
|
if coreference_id not in coreferences: |
|
coreferences[coreference_id] = [] |
|
coreferences[coreference_id].append(str(mention["id"])) |
|
|
|
row_id = str(index) |
|
row = { |
|
"id": row_id, |
|
"passages": [{"id": "passage-" + row_id, "type": "text", "text": [passage], "offsets": [[0, len(passage)]]}], |
|
"entities": [ |
|
{ |
|
"id": row_id + "-entity-" + str(mention["id"]), |
|
"type": mention["class"], |
|
"text": [mention["text"]], |
|
"offsets": [list(mention["offset"])], |
|
"normalized": [], |
|
} |
|
for mention in mentions |
|
], |
|
"coreferences": [{"id": row_id + "-coreference-" + str(coref_id), "entity_ids": [row_id + "-entity-" + entity_id for entity_id in entity_ids]} for coref_id, entity_ids in enumerate(coreferences.values())], |
|
"events": [], |
|
"relations": [], |
|
} |
|
yield index, row |
|
|